
T C 824 C 2 A 2 no. 130: 63 v.5 c.2

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

State of California THE RESOURCES AGENCY Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume V: SOUTHERN CALIFORNIA

MAY 2 1500

NOVEMBER 1965

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

ERRATA SHEET

Bulletin No. 130-63, Hydrologic Data 1963 Volume V Southern California

The following 13 pages replace pages B-1 through B-13. These corrected DAILY MEAN DISCHARGE tables are for the years 1961, 1962, and 1963.

- E AND K

DAY	-		4 0	2 4	e 4	2	4	~ ~		• •	0	=	12	13	14	15		0 1	201	0	3	;	21	1 6	24	25		27	28	29	30	5	MEAN	MIN	AC.FL
SEPT.	0.0										0.0	0.0	0.0	0.0	0.0	0 • 0	(0.0	0.0	0				0.0	• •		0*0	0.0	0•0		00		
AUG.	0.0	0.0				>	0.00			0.0	0.0	 0.0	•	•							0.0	0			0.0	0.0					00				
JULY	0.0	0.0					0.0	0.00	0.0	0.0	0.0	0 .0	0.0	0.0	0.0	0=0	0			0.0	0.0	0		0.0	0.0	0*0	0.0	0.0	0.0	0*0	0.0		00		
JUNE	0.0	0.0	0.0		0.0						0.0	0.0		•															0.0						
MAY	0.1	*0 • 0	0.00		0		0 • 0	0.0	0.0	0.0	0.0	*0*0	0	0 0	0.0	0.0	0		0.0	0.0	0.0	0		0.0	0.0	0.0								-0	
APR.	1.0	0.1	0.1		0.1		0.1	0.1	0.1	0 • 1	0.1	0.1	1.0	0.1	0.1	0.1	, (1.0	0.1	0.1			0.1	0.1	0.1	1.0	0.1	0.1	0.1	0•1				9
MAR.					0.0						0 • 2	0.1			0.1*	0.6		0.10	• •		0 • 1	*		0.1	0.2	0 • 1	c - 0	0.2	0.1	0.1	0 • 1 *		•	0-10	-
FEB.	0.5	0.7	0.4*	0.0	0.2		0.2	0.1	0.2	0.0	0.2	0.0		7 ° 0	2.0	0•3	3.0		6.0	0.2	0.2	 7		0.3	0.4	0.44	5 ° 0	0.0	0 • 5 *						18
JAN.	NR	NR	NR	NR	NR		NR	NR	NR	NR	NR	 XX XX	X Z	2	YZ	NR	dN	NR.	NR	NR	NR	dN	NR	NR	NR	NR	av	1.7	3 • 3	2.1	1.0*		Y Q	L R Z	NR
DEC.	NR	NR	NR	NR	NR		NR	NR	NR	NR	NR	X C	Y C	X I	Z	NR	QN	a N	NR	NR	NR	av	NR.	NR	NR	NR	an	NR	NR	NR	a a		X Q	a a a	NR
NOV.	NR	NR	NR	NR	NR		NR	NR	NR	NR	NR	X C	ž	22	Y I	R	dW	NR.	NR	NR	NR	âz	2 ZZ	NR	NR	NR	an N	NR	NR	NR	NN NN	4	X Q	a a a	NR
OCT.	NR	NR	NR	R	NR		NR	NR	NR	NR	NR	 Z Z	Y C	X C	YY	2 Z Z	dN	2 N	NR	2N N	NR	C Z	NR.	NR	NR	NR	an	NR	NR	лл	a a	:	X Q	22	NR
DAY	-	2	~		- 10		9	-		0	10	 =	12	13	14	15		17	18	01	20		17	23	24	25	76	27	28	29	30	;	MEAN	MAX.	

1961 V92200 WEST FORK OF THE MOJAVE RIVER BELOW CEDAR SPRINGS

WAIER TEAR STATION NO. | STATION NAME

DAILY MEAN DISCHARGE

TIME M I N I M U M GAGE HT. MO. DAY DISCHARGE

TOTAL ACRE RET NR

MAXIMUM GAGE HT. MO. DAY TIME DISCHARGE

DISCHARGE

* – DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY.

- E AND R

NR - NO RECORD E - ESTIMATED

а ф,

	MEAN MAX. MIN.	26 27 28 29 30 31	21 22 23 24 25	16 17 18 19 20	11 12 14 15	10 10	5402-	DAILY
ESTIMATED NO RECORD DISCHARGE MI OBSERVATION E AND R	<u>א א א א א</u> ת ת ת ת ת	<u>, , , , , , , , , , , , , , , , , , , </u>	N N N N N R R R R R	N N N N N N R R R R	N N N N N R R R R R R R R	N N N N N N R R R R R R R R	N N N N N N N N N N N N N N N N N N N N	CUBIC FEET OCT.
ESTIMATED NO RECORD DISCHARGE MEASUREMENT OR DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY. E AND R	<u>כר בר בר</u> ממת מת		N N N N N R R R R R R	N N N N N R R R R R R	2 2 2 2 2 2 7 7 7 7 7 7	2 2 2 2 2 2 7 7 7 7 7	N N N N N N N N N N N N	ILY MEAN DISCHARGE
R PE THIS DAY.	NZNR		N N N N N R R R R R R	N N N N N R R R R R	N N N N N R R R R R R	N N N N N N R R R R R R	N N N N N R R R R R	CCE
DISC	N N N N N R R R R					N N N N N R R R R R R	N N N N N N N N N N N N N N N N N N N	JAN.
DISCHARGE DISC	N N N N R R R R	0 • 2 0 • 1 0 • 1 *	2R 0	2 2 2 2 2 2 7 7 7 7 7 7	N N N N N R R R R R R	N N N N N R R R R R	N N N N N N N N N N N N N N N N N N	FEB. MAR.
DISCHARGE MAXIM	0 • 2 0 • 4 1 3	00000 ••••• ww 4 4 w V	0 • 1 0 • 1 0 • 2 0 • 2	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	V92300 MAR.
GAGE HT. MO. DAY	0 • 2 0 • 6 1 5	00000 44wwn	00000 40044	0 0 0 0 0 2	0000 0000 0000	00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	STATION NAME WEST FORK OF APR.
TIME	0 • 1 0 • 2 9	0 • 1 0 • 1 0 • 1 0 • 1 0 • 1	0 • 1 0 • 1 0 • 1	0 • 1 0 • 1 0 • 1 0 • 1	0.2 0.2 0.2 0.2	00000	0 0	OF THE MOJAVE
ARCE GAGE HT. MCM	000	00000						AVE RIVER ABOVE
DAY	000	000000				00000	00000	ABOVE CEDAR
TIME	000	000000		00000	00000	00000	00000	AUG.
ACRE FEET	000	00000		00000	00000	00000	00000	SEPT.
:	MEAN MAX. MIN.	26 27 28 29 30 31	21 22 23 24 25	16 17 18 20	112 113 114	0 7 8 ¢ 0	υ 4 ω μ –	DAY

MAR. ************************************
10.9 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.01 22.02 22.02 22.03 22.04 22.05 22.05 22.06 22.07 22.08 22.09 22.00 22.00 22.00 22.00 22.00 22.00 22.00 23.00 24.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 <
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 21 20 20 20 21 20 20
2.8.1* 3.9 2.9 2.9 2.8.1* 3.9 2.9 1.8.7 4.81 4.81 1.8.7 4.81 4.81 1.8.5 5.8 2.0 1.8.5 5.8 2.0 1.8.5 5.8 2.0 1.8.5 5.8 2.0 1.8.5 5.8 2.0 1.8.5 5.8 2.0 1.8.5 1.15 8.8 1.8.5 1.13 4.8 1.8.1 1.13 4.8 1.8.1 1.12 4.8 1.8.1 1.12 4.8 1.8.1 1.12 4.8 1.8.1 1.12 4.8 1.8.1 1.12 4.8 1.9.1 1.12 4.8 1.9.2 1.13 4.4 1.9.3 4.4 4.9 1.9.4 1.12 3.8 2.4 4.0 1.12 3.8 4.9 5.8 3.9 4.9 5.8 3.9 5.1 3.8 4.8 3.8 3.8 5.8 3.8 5.8 5.9 3.8 5.8 5.9 5.8 5.
2.3.2 4.5 2.0 1.5.7 4.5 4.6 1.5.7 4.5 2.0 1.5.5 5.5 5.23 1.5.5 5.5 5.23 1.5.5 5.5 5.23 1.5.5 5.5 5.23 1.5.5 1.06 1.3 1.5.5 1.06 1.3 2.2.5 1.13 8.5 1.5.5 1.16 1.3 2.5.5 1.13 8.5 2.5.5 1.13 8.5 1.5 1.13 8.5 1.5 1.13 8.5 1.6 1.12 8.5 1.6 1.12 8.5 0.5 1.13 8.5 0.5 1.13 8.5 0.5 1.13 8.5 0.5 1.13 8.5 0.5 1.13 8.5 0.5 1.3 3.5 0.5 1.3 3.5 0.5 1.13 8.5 0.5 1.13 8.5 0.5 1.13 8.5 1.5 1.13 8.5 1.5 3.5 5.5 1.6 2.3 3.5
10.7 4.53 10.7 4.65 11.55 5.23 10.55 5.23 11.55 5.23 11.55 115 12.55 115 13.55 117 13.55 117 13.55 117 14.55 113 15.51 113 16.51 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 11.5 113 12.6 113 13.8 3.9.6 14.8 3.9.6 15 3.9.6 16 113 17.6 123 18 3.9.6 19.8 3.9.6 10.6 2.2 10.6 2.3.9.3 10.6<
17 1
1.5 3.3 5.5 5. 1.6.3 10.5 5.3 5. 1.6.3 106 * 11. 2. 1.6.3 106 * 11. 2. 2. 1.6.1 11.5 11.5 11.3 * 7. 9. 1.6.1 11.6 11.1 2. 3.3. 8. 3.3. 1.6.1 11.1 2. 11.3 * 7. 9. 3. 0.0.7 6.6 6.0 11.3 * 8. 3. 3. 5. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 3. <t< td=""></t<>
1.3 5.3 1.3 5.3 1.5 1.5 5.3 1.1 7 7.9 1.5 1.15 1.15 1.15 1.3 8 1.5 1.15 1.15 1.3 8 8 1.5 1.16 1.13 8 8 3 1.5 1.16 1.12 8 8 3 1.5 1.12 1.2 8 8 3 0.5 7.3 1.12 8 8 3 0.5 7.3 1.12 3 8 8 0.5 7.3 1.12 3 8 8 0.5 7.3 1.12 3 8 8 0.5 7.3 1.12 3 8 8 0.5 7.3 1.12 3 8 8 0.5 7.40 1.12 3 8 8 0.5 7.4 1.12 3 8 8 0.5 7.4 1.13 3 8 8 1.5 7.4 1.16 1.18 3 8 1.5 3 3 8 8 8 1.5 3 <
1.65 223 113 * 7.1 1.66 115 * 113 * 7.1 2.8.2 106 * 113 * 8.3 2.8.2 106 * 113 * 8.3 1.8.5 1106 * 113 * 8.5 1.8.5 111 112 * 8.5 * 2.2 0.5 7.3 112 122 3.6 6.0 2.2 0.5 7.3 112 122 3.6 6.0 2.2 0.5 7.3 112 122 3.6 6.0 2.2 2.4 0.5 2.7 * 123 3.6 6.0 2.2 2.2 0.5 0.6 2.3 3.6 1.1 3.6 6.6 3.3 3.6 6.6 3.3 3.6 6.6 3.3 3.6 6.6 3.3 3.6 6.6 3.6 3.6 3.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6
1.3 106 1.6 115 2.22 69 1.10 1117 1.10 112 1.10 112 1.10 112 1.10 112 1.11 112 1.12 112 1.13 112 1.10 112 1.11 112 1.12 112 1.12 112 1.12 112 1.12 112 1.12 112 1.12 112 1.12 112 1.12 112 1.13 3.66 0.56 113 1.12 123 3.68 3.86 1.13 3.86 1.14 111 1.15 3.86 1.13 3.86 1.14 3.86 1.15 3.86 1.13 3.86 1.14 3.86 1.15 3.86 1.16 3.86 1.17 3.86 1.18 3.86 1.19 3.86 1.19 3.86 1.10 3.86 1.13 <
1.65 115 2.8-2 69 1.8-5 69 1.8-5 69 1.8-5 69 1.9-1 110 1.9-1 112 1.9-1 112 1.9-1 112 1.9-1 112 0.0-5 6-3 0.0-7 6-6 0.0-7 6-6 0.0-7 6-7 1.12 12 1.12 12 1.12 12 1.12 12 0.0-7 6-6 0.0 13 0.0 16 1.13 3.3.5 0.0 16 1.13 3.3.5 1.13 3.3.5 0.0 16 1.13 3.3.5 1.13 3.3.5 1.13 3.3.5 1.13 3.3.5 1.13 3.5.5 1.13 3.5.5 1.13 3.5.5 1.14 3.5.5 1.15 3.5.5 1.14 3.5.5 1.15 3.5.5 1.16 2.2.5 1.17 3.5.5 1.18 1.19 <t< td=""></t<>
2222 11.55 11.
1 1
10.1 1.0 1.0 1.0 10.1 1.1 1.0 1.1 00.6 7.3 1.1 1.1 00.7 66 7.3 1.1 00.7 66 1.1 1.2 00.7 66 1.1 1.2 00.7 66 1.1 1.2 00.7 7.4 1.3 3.9 00.6 7.3 1.1 1.2 00.6 7.4 8 3.9 00.6 7.4 8 3.9 00.6 1.3 3.9 1.1 00.6 1.3 3.9 1.1 00.6 2.3 3.9 1.3 00.6 2.3 3.9 1.1 00.6 2.3 3.9 1.1 00.6 2.3 3.9 1.9 00.6 2.3 3.9 1.9 00.7 2.3 3.9 1.1 00.6 2.3 3.9 1.1 00.7 2.3 3.9 1.1 00.8 3.9 3.9 1.1 00.9 3.9 3.9 1.1 00.9 3.9 3.9 1.1 00.9 3.9
0 0
00.0 0
0.66 73 11 3.44 0.07 56 13 3.44 0.65* 40 16 * 0.65* 40 16 * 0.65* 40 16 * 0.65* 40 16 * 0.65* 20 13 3.44 0.6 16 20 3.01 1.6 20 23 3.01 3.64* 0.0 25 3.01 3.65* 0.0 22 3.01 3.65* 0.0 22 3.01
00. 665 13 3.44 00. 4.0 8 3.34 00 * 4.0 3.34 00 * 23 3.34 00 0 16 13 4.0 * 23 3.04 4.0 8 20 3.03 4.0 8 20 3.01 4.0 0 23 3.01 3.0 0 22 3.01 3.0 0 22 3.01 3.0 0 22 3.01
0.07 52 13 3.3 0.64 27 8 3.3 0.65 27 8 3.3 0.6 23 3.6 5 0.8 18 3.0 4.6 0.8 18 3.0 3.0 0.8 18 3.0 3.0 0.8 18 3.0 3.0 0.0 25 3.0 3.0 3.5 3.0 23 3.0 3.5 3.0 22 3.0 3.5 3.0 22 3.0 3.5 3.0 2.0 2.0
0.65* 40 8 * 0.5* 40 16 * 0.3 * 1.40 16 4.4 1.6 4.4 1.6 4.4 1.6 4.4 1.6 4.4 1.6 4.4 1.6 4.4 1.6 4.4 1.8 4.4 1.8 4.4 1.8 4.4 1.8 4.4 1.8 4.4 1.8 4.4 1.8 4.4 1.9 4.4 1.9 4.4 1.9 4.4 1.9 4.4 1.9 4.4 1.9 4.5 1.9 4.6 1.9 4.7 1.9 4.8 1.9 4.9 1.9 4.9 1.9 4.6 1.9 4.7 1.9 4.8 1.9 4.9 1.9 4.9 1.9 4.9 1.9 4.9 1.9 5.9 1.9 5.9 1.9
8 * 23 3.0 4. 0 * 7.6 20 3.1 4.0 * 0.6 26 20 3.4.* 0.6 25 3.1 3. 4.8* 0.0 25 3.0 4. 3.3 0.0 23 3.0 2. 3.5* 0.0 22 3.1 3. 3.5 0.0 22 3.1 3.
0 * 7.66 20 4.3 * 7.66 20 3.44* 0.68 18 4.68* 0.60 25 4.88* 0.60 23 3.1 3.1 3.1 3.3 3.1 3.3 3.2 3 3.3 3.3 3.3
4.3 0.8 18 3.1 3.44* 0.0 25 3.1 3.2 4.88* 0.0 23 3.0 2 4.88* 0.0 23 3.0 2 3.3 0.0 22 3.1 3 3.55 3.1 3.2 3.0 3.55 3.1 3.2 3.2 3.55 3.1 3.2 3.2
* 0.00 23 3.00 2.00 2.00 2.00 2.00 2.00 2
* 0.00 22 3.1 3. 0.0 19 2.9 3.
* 0.0 19 2.9 3.
0.00 17 3.01* 3.0
0.0 19 3.3 2.
19 3.1 3.
* 19 2.69
* 18 2•
3.5 42.8 14.7 6.8 3.
25°0 20°0 5
5 2376 907 403 20

MINIMUM DAT THE GAGE HT. MO. DAT THE 10 1 0000 0.0 DISCHARGE M A X I M U M GAGE HT. MO. DAY TIME 4.82 2 9 1000

DISCHARGE 413 MEAN DISCHARGE 6 • 0

+

4366

TOTAL ACRE FEET

AC. FT.	MIN.	MAX.	MEAN	31	30	29	28	2/	26		25	24	23	22	21	20	91	18	17	16	č	14	: :	12	11	-	5 •	8	7	۰	U		. ω	2	-	DAY		Î	DAILY	
	0.0	0.0	0.0	0.0	0.0					>	0.0	0.0	0.0	0.0	0.0										0.0				0.0	0.0				0.0	0.0	OCT.		(IN CUBIC FEET PER SECOND)	MEAN	
	0.0		0.0		0.0					>	0.0	0.0	0.0	0.0	0.0	0.0						0			0.0					٠			000	0.0	0.0	NOV.		PER SECOND)	DISCHARGE	
128	0.0	0.62	2.1	0 • 1	1.0					>	0.1	0.1	6.0	1.1	1.1	T ● U ≂		1.04	1.4	1.2	3	1 e 1	1 - 6		1.3	i i	יז גר דיי ר	2 1 2	1.5	2.1		44°-1		* 67	0.0	DEC.			GE	
395	0.0	48.0	6.4	8•6*			71	 	+ 01		11		14 *		36	40						0			0.0				0.0	0.0			0.1*	. .	0.1	JAN.				
6805	6.4	96	123				00	2	4 3 1 C	n -	58	59	60	64	84	× 611		7 1 1	71	163	1	158	70		532 *		+ 021 × 2/5			6.4*					9.2*	FEB.			1962	
2196	26.0	0.99	35.7	27	20		2 ~	- 1 C	200	5	41	46	50	40	41	4+ U	- L	ט נע ג ת	200	29		285	0	2 C	36		2 K		. U	56 *	6	20	28	31	34	MAR.			V92200	
994	4.]	34.0	15.0		4 • L	- 4	1.0	7.0	9.7*	5	10	9.7	11	9.7	11	T				60 A			7 1 7	+ 51 *	15	ŀ	1 J O	~ ~ ~	22	2	0	2 C 4 C	29	26	6	APR.			WEST FORK OF	
347	2.1	13.0	5.6	4.7	+		*L*7		10	2	4.7	2.9	4.4	5.2	5.4			י ט גע	o u	د <u>د</u> در د	1	12	0.4	2.5	2.8*			> ~ ~	2.7	2.8		*C • 7		້	3.9	MAY			OF THE MOJAVE	
85	0.0	4 (9 (0 (1.4							>	0.0	0.0	0.0	0.1*	0.7	0.0				0.6				 	1.5		1.0		ຫ		0.00		3.7	3.7	4.3	JUNE			RIVER	
2		- 6	0.0										0.0			0.0				0000				0.1						0.1			0.1			ATOL			BELOW CEDAR	
			0.0	0.0						>					0.0					000					0.0								000			AUG.			SPRINGS	
	0.0	0.0	0.0		0.0		0	0.0	000	>	0.0		0.0							00				000									0.0			SEPT.				
AC.FT	MIN.		MEAN	31	30	3 5	2 2	2 1	26	2	25	24	23	22	21	20	19		17	16	į	5 3	: :	12	=	č	5 %	00	7	•	v	4	ω	2	_	DAY	J	-		

 E - ESTIMATED
 NO RECORD
 A DISCHARGE MEASUREMENT OR
 OBSERVATION OF FLOW MADE THIS DAY. # - E AND R

DISCHARGE

DISCHARGE

MAXIMUM GAGE HT. MO. DAY TIME 5.90 2 12 0200

DISCHARGE GAGE HT. MO. DAY TIME 0+0 10 10000

TOTAL ACRE FEET _ 10850

. .

(DAY	-	2	с С	4	ŝ	 \$	7	80	6	10	11	12				2	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	MEAN	MAX.	MIN.	AC.FI.
	SEPT.	*0°0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	*0 ° 0 *		0	0.0	0	
	AUG.			0.0						0.0			- 6			0.0		0.0							0.0							0.0			0.0		-
	JULY	1.7	1.44	1.4	1.44	1.4	1 • 4	1.04	1•1	0.8	0•8	0 = 8	0 . 4	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0•0	0.0	0.0	0.0	0.0	0.0	0.0	0=0	0.0	0.0	0.0	0.5	1.7	0.0	28
	JUNE	2.65	2.07	2.9	3.2	3•6	1 • t	4 °3	4•1	3.6	3.4	3 . 4 *	0.8	0.0	0.0	2.5		2 e 9	1.0	*0*0	0.1	0•1	0.1	0.0	0.02	0•2	0 • 8 *	1.1	1.64	1.9	1.7	1.47		1.8	4 • 3	0.0	108
	MAY			4 a 1	- e		•	۰	•	9°0	•					4 3		5.1	•	۰			4 • 3	4.5	4 • 3	4.3	4°3*					2.9	2 • 5 *			2.5	5
	APR.			8.5			0 0	0	7.9	7.9	7 • 7	7.4	7.0	6.7	6 • 6	0 • t		6.4	6 • 8	6 • 6 *	6 • 4	5 • 8	5.4	5.0	4.7	4.3	4.3	4 . 3 *	4.1	3.9	3.9	4 • 3		6.5	9•2	3.9	386
	MAR.	23	21 *	20	19	19	 26	23		22 *	20	18	17	16	15	14		14	13	14	15	13	12	12	12 *	10	11	11	11	11	11	9 • 8 *		15.6	26 e O	8.7	959
	FEB.	19	19	19	20	20	20	21	80	150 *	330	984 *		176	121	133 *		110	86	54	113	88	¢ 89	55	48	44	39	7 4 *	26	24				116	.t	19.0	글
	JAN.	0•0	0 " 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.4	20	21	21	2.0	21.0	0.0	126
	DEC.	NR	NR	NR	NR	NR	 YX.	AR	NR	NR	ZZ	NR	NR	NR	NR	NR		NR	NR	NR	N.R.	NR	NR	NR	NR	NR	AR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
ER SECOND)	NOV.	NR	NR	NR	NR	NR	 XX	NR	AR A	RR	NN NN	NR	NR	NR	NR	NR		NN	NR	NR	NR	RR	NR	NR	NR	NR	A N	N N	NR	NR	NR	AR		NR	ЧN	NR	NR
(IN CUBIC FEET PER SECOND)	OCT.	NR	NR	NR	NR	NR	AR N	NR	NR NR	NR	N N	NR	NR	NR	an	NR		NR	AR	NR	MR	NR	NR	NR	NR	RR	чч	a z	NR	NR	NR	NR	NR	AN	NR	NR	NR
O NI	DAY	-	2	e	4	ŝ	 •	7	00	6	10	11	12			e 4	2	16	17	18	19	20	10	22	23	24	25	34	27	28	29	30	31	MEAN	MAX.	MIN.	AC. FI.

TIME DAY MINIMUM GAGE HT. MO. DISCHARGE TIME M A X I M U M GAGE HT. MO. DAY DISCHARGE RR

E - ESTIMATED
 NR - NO RECORD
 NCLARGE MEASUREMENT OR
 * DISCEVARGE MEASUREMENT OR
 * DISCEVATION OF FLOW MADE THIS DAY.
 [±] - E AND R⁺

MEAN DISCHARGE NR

• 4

TOTAL ACRE FEET NR

ELIZABETH LAKE CANYON CREEK ABOVE CASTAIC

32330

1962

DAILY MEAN DISCHARGE

(IN	DAY	,	2 12	• •		0	۰	7	60	•	10	1	12	T 0	15	6	17	18	20	2	22	23	24	25	26	27	28	22	31	MEAN	MAX.	MIN.
(IN CUBIC FEET PER SECOND)	OCT.				0				000							0.0	0.0	0.0	0.0		•	0.0						• •	0.0		0.0	
PER SECOND)	NOV.				00				0.0							0.0	0.0	000	0.0		•	0.0			0.0	0.0				0.0	0.0	0.0
GE	DEC.	0.0				- • U	0.4	0.4	0.0	0.3	0•3		00,00						0.2*	Þ		0.2			0.2	0.2			0.2	0.6	8.8	0.0
	JAN.	0.2	J N	0.1	0.1	C e I		•	0.1			0.1	0.1	0.1	0.1	0.1	0.1	0.1*	7.6	3.4*	1.9	1.7*	1.4*	0.8	0.5*	0.7	1.2	*7°L 787	1.4*	0•8	7.6	0 • 1
1962	FEB.	4			104 104*	• +	1.4	1.6	30 *	6	24	113	57 *	24	32	23	17	, 1 9 9	11 *	11		5°6			5 • 7	2.1	6 • U			19.3	113	1.4
005260	MAR.	6.00			13	51	10 *	12	12	13	13	14	ן 1 ג ג ג ג ג	0.	6.4	*0.*	4.0	4.0	4 • 4 4 • 4	4.1	4.3	4.3	4.0	6°6	6°E	- 00	یں در • •		3 U • N	۲	15	3.2
WEST FORK OF	APR.				2.7				2.7				2.1			1.9	1.9	1.7	1 • 7 1 • 7	1.7	1.6	1.6	1.6	1.5	1.4	1.4*	1.0	1.4		2.1	3•1	1.4
OF THE MOJAVE	MAY				L e L				1.1				1.0						1.01	1.1	1.0	1.0	0	1.0*	1.0	1.1	1.1		1.0	1+1	1.6	1.0
RIVER	JUNE	6.0	000		0.7	0.7		-1	0.6*			0 • 4	0.4	***	0 • 5	0.5	0.5	0.4	ω t 0 0	•		0.3								0.4	6 * 0	0.1
ABOVE CEDAR	JULY								0.0		0 • 0				0.0				00					0.0					0.0		0.1	0.0
R SPRINGS	AUG.	0.0*	0.0			0.0	0.0	0.0	0.0	0.0	0 • 0	0 • 0	000	00	0.0	0	0.0	0.0	00	0	0.0	0.0	0.0	0 • 0	0.0				0.0		0.0	
	SEPT.								0.0				000			0	0.0	0.0	0.0	0.	0.0	0.0	0.0	0.0	0.0	0.0		> C	0	0.0	0.0	0.0
	DAY	_	2	۰ u	л а		•	7	00	Ŷ	10	1	12		15	1	17	10	19	2	22	23	24	25					31	MEAN	MAX	MIN.

- E AND R

E – ESTIMATED
 NR – NO RECORD
 * – DISCHARGE MEASUREMENT OR
 * OBSERVATION OF FLOW MADE THIS DAY.

DISCHARGE

MEAN DISCHARGE 337

MAXIMUM GAGE HT. MO. DAY TIME 5.55 2 12 0000

0.0

DISCHARGE GAGE HT. MO. DAY TIME 10 1 0000

TOTAL ACRE FEET 1808

.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WEST FORK OF THE MOJAVE RIVER BELOW CEDAR SPRINGS V92200 1963

DAY		0 2								0					-			*				-	0 23						0 29		16		MAX.	
SEPT.	0.0	0.0	•0	0.0	0.0	0.0				•••					0.0	0.0	.0	24	10	*0*0	0 • 0	.0	•••	0.0	0•0	0 = (0.0	0.0	0.0	0*0		1.1	24.0	
AUG.	*0 • 0	0.0	0.0	0.0	0 • 0	0*0				0.0					0.0			0.0		0.0	0.0	0.0	0.0	0.0	0.0	0 = 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
JULY	0.5	0.5	0.5	0.5	0.5	0.44			8.0	1 • 8				0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.8	
JUNE	0.4	0 = 3	0.9	0.9	0.3	0.3	0.3		0.0	0.2	r c	0.0	0.0	0.2	0.3	0.13	0.2*	0.1	0.2	0.2	0.3	0.3	0.3	0.3	0 • 4	0.93	0 • 3	0.4	0.3	0.4		0.3	0.4	
MAY	8 6	7.3	6.7	5.4	4 • t	3.68	3.6			2.0) • 1	1 •0	0 8	0.8	0.7	0.7	0.5	0 • 5	0.6	0 8	1.1	1.2	1.44	1 • 8	2.03	1.47	0.7	0.5	0.4	2 • 2	8 °3	
APR.	0.7	0.6	0.5	0.4	0.4	0.4	5.0	C	0.5	0 • 5	c		0.5	1.2	2.2	6 . [1.44	1.04	1.1	1 • 8	19	12 *	7.	6 • 8	6.7	, S.	14	8	6 e 8 *	7.7		0 • 4	19.0	
MAR.	0 • 2 *	0.2	0.2	0.2	0.2*	0.2	0.0	0.0	0.0	0.2	* • •		0.1	0.1	0.2	0.3	1.5	1.3	0=3*	0.3	0.4	***0	0.7	1.0	0•6	0.5	0.6	4.1	3.7	1.44	0•0	0.7	4.1	
FEB.	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1 . 8*	46 *	1 1 1	1.44	1.1*	1.1*	1.0*	0.9	0.3	0.3*	0.2*	0.2*	0 • 3 *	0.4	0.2	0.2	0.62*		0.2	0.2				2 • 2	46.0	
JAN.	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	c		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0•0	0.0	0.0	•
DEC.	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	
NOV.	0.0	0.0	0.0	0.0	0•0	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
OCI.	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0 0	0.0	0.0			0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
DAY	-	2	en	4	ŝ	ý	4 (10	;	= :	13	4	15	16	17	18	19	20	21	22	23	24	25	36	27	28	29	30	31	MEAN	MAX.	

639 TOTAL ACRE FEET 10 1 0000 •

MINIMUM DISCHARGE GAGE HT. MO. DAY TIME 0.0 GAGE HT. MO. DAY TIME 4.31 2 10 0250 MAXIMUM DISCHARGE 131 0•0 DISCHARGE MEAN

E – ESTIMATED
 NP – NO RECORD
 N – DISCHARGE MEASUREMENT OR
 * DISCEVATION OF FLOW MADE THIS DAY.
 # – E AND R

				04	010	00 (on.	16390	2 P	NR	NR	A N	AC. FT.
MAX.		20		2.2	20.4	14.0	48.0	2420		N NR RR RR	2 Z R R	N 2 N 17	MAX.
MEAN	 1 	•	a	0.7	•	•	0	295	R	NR	NR	NR	MEAN
31		0.0	0		2.2*				NR	0.0		NR	31
30	0			0.2	2.4				N	0.0	N	NR	30
20					2.0	a (NR	0	NR	R	20
20				0	ω (• •			20.00	NR	0	N.N.	N D	28
26					ین در • •	ס - כ - ת וי	17	5 7 2 00			Z Z		20
	>			5	ა "ი	L		* 	ND D	0	NP	2 D	2
25	0.0	0.0	0.0	0.2*		7.2	18	79	NR	0.0	NR	NR	25
24	0.0		•	0.2		7.4	19	88	NR	0.0	NR	NR	24
23	0.0	•	•	0.2	4.1	7.8	* [2	66	NR	0°0	NR	NR	23
22	0.0	•	0	0.2		00 در ً	21	112	ZR	0.0	NR	R	22
21	0.0			0 • 2		8.7	23	132	2R	0.0	NR	NR	21
20	0.0				4.1		24	001	ZZ	0.0	NN	NK	20
19	0.0		0.0	2.00	. 5 O	0 40 0 33	31	6/2	27				19
18	0.0			C.2*	5.2*		24	66	N	NR	N	NR	18
17	0.0		0.0	0.2	5.0		21	119	NR	NR	NR	Z	17
16	0.0			0.2	4.8		22	172	NR	NN	NR	N R	16
15	0.0	0.0	0.0	0 • 2	4.6		24	216	2	2	NR	ZX	15
14	0.0		0.0	0.4	4.2	0, 0 • •	0	101	Z Z	27	2 22		14
13	0+0	•	0.0	0.4	3.9	10	27	257	NR	Z R	NR	N R	13
12	0.0	•	0.0	0.4	3.7	10	28	609	NR	NR	NR	NR	12
=	0.0	•	0	∵ •∪*	* ۲. e C	11	26	* 0612	NR	NR	NR	N N	1
0	0.0		0.0	1107	0.0	7	2 7	1400	1417		3		ō
•	0.0		0.0	0.9	ی د • ا		4 0	> 0	2 2	2 2	N R	2 2	; •
80	0.0		0.0	1.1	3 9	11	· 00	154	2	2 2	27		00
7	0.0	0.0	0.0	1.3	4.1	12	43		0.0	N N	NR	2 2	7
<u>с</u>	0.0		0.0	1.5	4.2	12	48	ວ • ວ	0.0	NR	NR	A N	6
G	0.0	0.0	0.0	1.5		13	36	0.0	0.0	2	2	NIK	0
4	0.0	0.0	0 •	1.7	4.6*	13	38	0.0	0.0	NR	N N	NR	4
ω	0.0	•	ວ • ວ	2.0		14	68	0.0	0.0	NR	NR	NR	ω
2.	0.0	•	0.2*	2.2		14	28 *	0.0	0.0	NR	NR	NR	2
_	0.0		0.2	2.1		14	28	0.0	0.0	NR	NR	NR	_
DAY	SEPT.	AUG.	JULY	JUNE	MAY	APR.	MAR.	FEB.	JAN.	DEC.	NOV.	OCT.	DAY
_							ļ				IN CUBIC FEET DED SECONDI	URIC FEFT	Î
-			CH	CORDOVA RANCH	CREEK ABOVE C	CASTAIC CRE	32360 C	1962		G	DISCHARGE	MEAN	DAILY

E -- ESTIMATED NR - NO RECORD * -- DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY. = - E AND R

DISCHARGE DISCHARGE

GAGE HT. MO. DAY TIME

DISCHARGE

GAGE HT. MO. DAY TIME

ACRE FEET

L. DAY		0.	0.	0.0	0	0	v 0.0	0	0		0	0		0.0		0,0	20			c	0.0	0	0.	0	0	0.0 27	0	0	31			0.0 MIN.		(1
SEPT.											 																							TOTAL	INIAL
AUG.	0 • 0	0 • 0	0.0	0.0	0 • 0	0 • 0	0.0	0.0	0.0	0 • 0	0.0					0.0			0 • 0	0.0		0.0	0.0	0 • 0	0 • 0	0.0	0.0	0.0	00			0.0		(1
JULY	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			1	0.0			0=0	0.0	0	0.0	0.0	0 • 0	0*0	0*0	0.0	0•0	0.0	0		0.0			W D
JUNE				0.2	•		0.0	- 4			•	•	•	0.1								0.1	0.1	0.0	0.0	0.0	0°0	0.0	0.0			0.0	9	AA 1 A1 1 A4 1 A	
MAY				0.8		0 • 8	0.8	0.7	0.7	0.6	0 °	0 ° 0 "		4.0		400		n m	0.3	~ C		0.3	0.2	0 • 2	0.2	0.2	0.02	0.0	0 • 2	5.0		0 0	28		
APR.	0.4	0 a 4	0 • 4	0.3	0		0.2				0.1		200	4.0				1 4 C		ر م) (1) • •	1.0	0.8	0.8		1.8				4.0		0.1	38		WOW
MAR.	0.1	0.2	0.42	0.2	2*0		02	- 0			•	•				0.0	•	t 4							0.6	0.5	0°8	0.6	0 • 0 • 4	0		0.1	50		MAXIMUW
FEB.	0*0	0.0	0=0	0.0	0.0	0.0	0.0	0=0	0.6*	4 • 8 *	*8•0		****	*0.00		4 ° C		* " • 0	0.2*	0.2*	0.2	0.2	0.2	0.2*	0.2	0 • 2	0.2			4	00 t 00 t t= 0	0.0	22		MEAN
JAN.	0.0	0.0	0.0	000	0	0 ° 0	*0*0	0.0	0.0	0.0				0.0				000	0.0	0		0 • 0	0 " 0	0 • 0	0 • 0	0.0	0.0	0.0	60 00			0.0			MEAN
DEC.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 00			0.0		000			0.0	0	0	0.0	0*0	0.0	0=0	0*0	*0*0	0.0	000	0		0.0			
NOV.	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0*0	0.0	0.0						000		000	0.0	0,0	0	0.0	0.0	0.0	0.0	0*0	0*0	0.0	*0°0	0		0.0			
OCT.	0 • 0	0 • 0	*0*0		0.0	0.0	0.0	0*0	0.0	0.0	000					000			0•0	0,0	0.0	0.0	0.0	0 • 0	0*0	0.0	0.0	*0 • 0	00	0		C • C			ESTIMATED
DAY		3	en	4	'n	Ŷ	-			10	 11	12	13	e 1	2	16	17		20	;	21	23	24	25	26	27	28	29	30	MEAN	MAX	MIN.	AC. FT.		F - FSI

WEST FORK OF THE MOJAVE RIVER ABOVE CEDAR SPRINGS V92300

WATER YEAR STATION NO. STATION NAME

1963

DAILY MEAN DISCHARGE VIN CUBIC REET DED SECONDI °.

(IN CUBIC FEET PER SECOND)	OCT. NOV.	2•4 0	2 6.1 0.0	4.3 0	5.9 0	0 8.6	10 0	7 5.4 0.0	0.4 0	0.1 0	0.1 0	0.0			0.1 0	0.1 0.			0.1* 0.	0.1 0	0.1		25 0.0 0.1		0.0	00			26 0.0 0.1 27 0.0 0.2 28 0.0 0.2 29 0.0 0.2 30 0.0 0.2 31 0.0 0.2	
	DEC.	0.1	0 • 1	0.1	0.1	0.1		0.1		1				0.1		•2		0.2					0.2					0.2		0.0
	JAN.		0.2					0.2*		2			•				•	0.0		0.2	0.2		0.2					0•3*		0.4
1963	FEB.	0.5	0.4	0 • 3	0.3	0.4	0.4	0.4	0.4	5.6*		2.8*	• °	0 8*	-1			0.0*		0.6*	0.6		0.6	•	0.6				ъ н а	0.01 0.01
V92250	MAR.		0.6	•				0.6						00		•		1.1					1.0	•				6°0 1		0.5
E.F. OF WEST	APR.	•	0.7					0.6						00		0.7	1.0		1.0				1.0			1.6				0.4
ST FORK OF	MAY	1.6	1.4	1.3	1.3	1.3	•	1.2						1.0				0.9		6°0	6.0		0.9					1.0		0.00
THE MOJAVE	JUNE	•	6 • 0		•		•	0.8	•					0.7				0.4					0.4			0.3			0.6	0.2
RIVER	JULY	0.2	0 • 1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000	0.0		0.0
ABOVE CEDAR SPRINGS	AUG.	0 • 0*	•••	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0 • 0	0.0		0.0	0.0	0.0	0.0	0.0	0.0				0.0	0.0	00
SPRINGS	SEPT.	0.0	0.0	0.0	0.0	0.0*	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0#0	0.3	2.9	1.4	6*0	0.5	0.5	0.0	0.2	0.1	0.1	0.1	0 • L *	1.3	0.67
	DAY			ω 1					8		_	_		13					20		2		25	2	N	N		31 20	ME	MAX.

WATER TEAR STATION NO. STATION NAME

E -- ESTIMATED
 NR -- NO RECORD
 ADISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY.
 = - E AND R

MEAN DISCHARGE

DISCHARGE 217

MAXIMUM GAGE HT. MO. DAY TIME 4.36 9 18 0700

 M I N I M U M

 DISCHARGE
 GAGE HT.
 MO.
 DAY
 TIME

 0+0
 In
 In
 1
 0000

ACRE HEET

. .

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

CASTAIC CREEK ABOVE CORDOVA RANCH 32360 1963

DAY		~	0	4	5	-0				. 0	-	12	3	4	ŝ	Ŷ	~	18	6	0	-	2	23	*	\$.01		20 0	~ <	31	MEAN	MAX.	MIN.
â								_																				·					
SEPT.		0.0							6 A	0.0		0.0				0.0	0.0	0.0	0.1	0.0	0 • 0	0.0	0.0	0.0	0 • 0	0.0			•			0.1	
AUG.	0.0	0.0	0.0	0*0	0.0	0.0				0.0	0 • 0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0*0	0.0	0.0				00	. •	0.00	•
JULY	0.0	0.0	0.0	0*0	0=0	0.0				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000			0	0.0	0.0	0.0
JUNE		0.0				*0*0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.00	0.0	0.0	0.0					0.0	0.0	0
MAY		1.9							p 4	1.1		0.9					- 0	0.7					0.2	٠			•	•		00	0.5	1.0	0.0
APR.		0.7				0.3			***	4.0		0.3				0.3	0.2	0.1	0.0	0.1			0.1	- 0		13	*	5 C	2.0	•	0°0	13.0	0.0
MAR.	0.0	0.0	0.0	0.0	0.0		• •	Ð (• •	0.0	0.0	0 • 0	0 * 0	0.0	0.0	0.6	1 • 3	0 • 6 *	0 • 2 *	0.1*	0.1	0.1	0.5	0.2	0 • 2	0.2	, , , , , , , , , , , , , , , , , , ,	n 1	* " • 7 *	0 • 0	1 0	4 (0 (
FEB.	0.0	0.0	0.0	0.0	0.0		• •		-	32 *		0.1	•			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0				87.0	
JAN.	0*0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0*0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0*0	0.0	0.0
DEC.	0.0	0.0	0.0	0.0	0.0	0*0	0.0		0.0	0.0		0.0				0.0	0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	200	0.0		0000	0.0	0.0	0.0
NOV.	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0*0	0.0	0*0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	000	•	0.0	0	0.0
OCT.	0.0	0•0	0.0	0*0	0.0	0.0	0.0		0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0*0	0.0	0.0	0.0	0.0	0 0	0.0		00	0.0	0	0.0
DAY			_				_		-	. 0					15				_	20				_	25			-	_	31	MEAN	MAX.	MIN.

344 TOTAL ACRE FEET

1 0000

MINIMUM GAGE HT MO. DAY TIME 10 1 0000 0.0 DISCHARGE
 M A X I M U M

 GAGE HT.
 MO.
 DAY
 TIME

 3.85
 2
 9
 2000
 DISCHARGE 663

* - DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY.

MEAN DISCHARGE 0.5

- E AND R

11

E - ESTIMATED NR - NO RECORD

* 11

MAR. 0.44 0.45 0.65 0.65 0.65 0.65 0.65 0.68 1.07 1.21 1.21 1.22 1.22	MAR. 3 3 3 3 3 3 3 3 3 3 3 3 3	3 32330 MAR. 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 0.44* 1.44* 0.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1.44* 1	3 32330 ELIZABETH LAKE CANYON CREEK ABOVE CASTA MAR. APR. MAY JUNE JULY •44 0.4 5.4 1.3 0.4 0.0 •44 0.5 5.2 1.0 0.4 0.0 •44 0.9 4.9 0.9 0.3 0.0 •44 0.9 4.9 0.8 0.0 0.0 0.0 •44 0.9 4.9 0.9 0.3 0.0 0.0 0.0 •44 0.9 4.9 0.8 0.6 0.0 0.0 0.0 0.0 •44 0.9 4.9 0.8 0.6 0.0<	32330 ELIZABETH LAKE CANYON CREEK ABOVE CAS MAR. APR. MAY JUNE JUNE •4* 0.4 5.4 1.3 0.4 0 •44 0.5 5.2 1.0 0.3 0.4 0 •44 0.99 4.9 0.9 0.3 0.4 0 0 •44 0.99 4.9 0.9 0.3 0 0 0 •44 0.99 4.9 0.9 0.3 0
MAR. MAR. MAR. MAR. MAR. 0 • 4 • 4 4 4 4 * 0 • 5 • 4 4 4 4 * 0 • 6 • 5 • 4 4 4 4 * 0 • 6 • 5 • 6 • 7 • 1 • 0 • 6 • 7 • 1 • 0 • 1 • 1 • 1 • 1 • 1 • 1 • 1 • 1	FEB. MAR. APR. 0.44 0.44 0.45 0.44 0.45 5.1 0.44 0.46 5.1 0.44 0.46 5.1 0.44 0.46 5.1 0.44 0.46 5.1 0.44 0.47 0.46 0.44 0.46 5.1 0.44 0.47 5.4 0.44 0.49 4.49 0.44 1.1 5.4 1.1 1.41 5.4 1.1 1.41 5.4 1.41 1.42 5.4 1.41 1.43 7.11 1.41 1.43 7.4 1.41 5.4 5.4 1.41 5.4 5.4 1.41 5.4 5.4 1.41 5.4 5.4 1.41 5.4 5.4 1.41 5.4 5.4 1.41 5.4 5.4 5.4	FEB. MAR. APR. MAY JU 0.44 0.4 0.4 5.4 1.3 0.44 0.64 5.1 1.3 0.9 0.44 0.64 5.1 0.9 0.9 0.44 0.64 5.1 0.9 0.9 0.44 0.9 4.9 0.9 0.9 0.4 0.9 4.9 0.9 0.9 0.4 1.1 6.2 0.6 0.7 11 1.2 6.6 1.4 1.3 11 1.2 6.6 1.4 1.3 1.1 1.2 6.6 0.6 0.6 2.5 1.1 5.5 0.6 0.6 2.5 1.1 5.5 0.6 0.6	FEB. MAR. APR. MAY JUNE JUNE 0.44* 0.44* 0.44 0.44 0.45 5.1 1.3 0.44 0.44 0.44* 0.44 0.45 5.1 1.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.44 0.9 0.43 0.64 0.9 0.43 0.64 0.63 0.64 0.9 0.43 0.64 0.9 0.43 0.64 0.9 0.43 0.64 0.63 0.64 <td< td=""><td>* FEB. MAR. APR. MAY JUNE JUNE JUNE 0.44* 0.44 0.44*</td></td<>	* FEB. MAR. APR. MAY JUNE JUNE JUNE 0.44* 0.44 0.44*
40080 001400 0100	40080 001000 ×	40000 00100 x	Apr. MAY JUNE JUNE 55.2 1.0 0.4 0.0 55.2 1.0 0.9 0.3 0.0 99 4.9 0.9 0.3 0.0 99 5.4 0.4 0.0 0.0 99 4.9 0.9 0.3 0.0 99 5.4 0.4 0.0 0.0 99 5.4 0.4 0.0 0.0 99 5.4 0.4 0.0 0.0 99 5.4 0.4 0.0 0.0 10 5.4 0.4 0.0 0.0 5.4 0.4 0.4 0.0 0.0 11 5.4 0.4 0.4 0.0 0.0 11.3 0.4 0.4 0.4 0.4 0.4 0.4 11.3 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Apr. MAY JUNE JULY Aug 5-4 1.3 0.4 0.0 0.3 0.0 5-5 1.3 0.4 0.0 0.3 0.0 0.3 6-6 5-4 0.9 0.3 0.0 0.3 0.0 0.0 9 4-7 0.9 0.3 0.0 0.3 0.0 0.0 9 5-4 0.9 0.3 0.0 <
APR. 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.	APR. MAY 5.4 1.3 5.4 1.3 5.1 0.9 4.9 0.9 5.4 1.3 0.9 4.9 0.9 4.9 0.9 5.4 1.3 0.9 4.9 0.9 5.4 1.3 0.9 4.9 0.9 5.4 1.3 0.9 5.4 0.9 0.9 5.4 0.9 0.9 5.4 0.9 0.9 5.4 0.9 0.9 5.4 0.9 0.9 5.4 0.9 0.9 5.4 0.9 0.9 0.9 5.4 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	Apr. MAY JUNE 5.4 1.3 0.4 5.5.1 0.9 0.3 4.9 0.9 0.3 4.9 0.4 0.3 5.2 1.3 0.3 4.9 0.9 0.3 4.9 0.4 0.3 5.1 0.9 0.3 4.9 0.3 0.4 5.4 0.9 0.3 4.9 0.4 0.3 5.4 0.4 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.4 5.5 0.6 0.5		
	AKE CANYON 1.3 1.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	MAY JUNE 1.3 0.4 0.9 0.3 0.9 0.3 0.9 0.3 0.4 1.3 1.3 0.4 1.3 0.4 1.3 0.4 0.9 0.3 0.9 0.3 0.4 0.4 1.3 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 1.4 0.4 0.4 0.4 1.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 0.5		

WATER YEAR STATION NO. STATION NAME

E - ESTIMATED
 NR - NO RECORD
 + - DISCHARGE MEASUREMENT OR OBSERVATION OF FLOW MADE THIS DAY.
 = - E AND R

DISCHARGE GAGE HT. MO. DAY TIME

DISCHARGE

DISCHARGE GAGE HT. MO. DAY TIME

ACRE FEET 71-1 4

State of California THE RESOURCES AGENCY Department of Water Resources

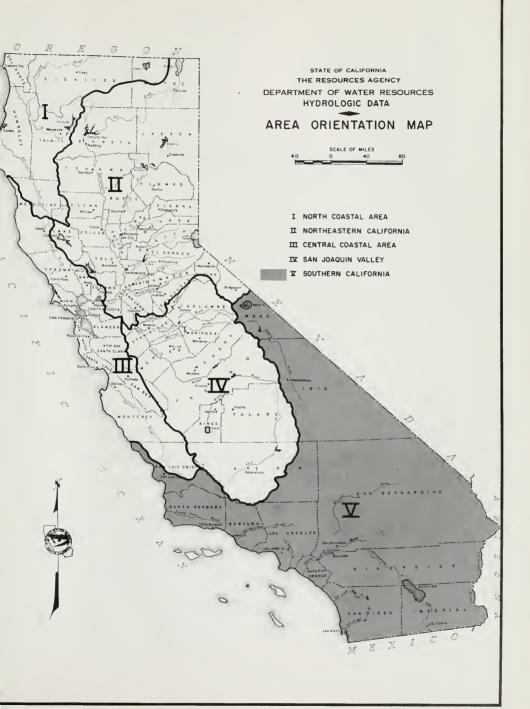
BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume V: SOUTHERN CALIFORNIA

NOVEMBER 1965

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources


ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume	I	-	NORTH COASTAL AREA
Volume	II	-	NORTHEASTERN CALIFORNIA
Volume	III	-	CENTRAL COASTAL AREA
Volume	IV	-	SAN JOAQUIN VALLEY
Volume	V	-	SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and

Appendix	A	-	CLIMATE
Appendix	В	-	SURFACE WATER FLOW
Appendix	С	-	GROUND WATER MEASUREMENTS
Appendix	D	-	SURFACE WATER QUALITY
Appendix	E	_	GROUND WATER QUALITY

TABLE OF CONTENTS

<u>P</u>	age
LETTER OF TRANSMITTAL	iii
ACKNOWLEDGMENT	xiv
ORGANIZATION	xv
CHAPTER I. HYDROLOGIC CONDITIONS 1962-63	1
Statewide	l
Southern California	5
CHAPTER II. INTRODUCTION TO DATA ACTIVITIES	11
Objectives and Scope	12
Data Collection Activities	12
Methods and Procedures	13
Hydrologic Area Coding System	13
Boundaries and Definitions	14
Variations from Previous Coding Systems	16
Areal Designation Code	18
Station Numbering Systems	20
Precipitation Station Numbering System	21
	21
Surface Water Station Number System	22
Definition of Seasons	23
Precipitation	23
Surface Runoff	23
Sewage Disposal	23
	23
	23

	Page
Prior Reports	24
Contemporary Basic Data Reports • • • • • • • • • • • • • • • • • • •	25
Definition of Terms	26
CHAPTER III. CLIMATE	29
Precipitation	29
Central Coastal Drainage Province (T), (Santa Barbara and San Luis Obispo Counties)	30
Los Angeles Drainage Province (U)	33
Lahontan Drainage Province (W), (Southern Portion)	34
Colorado River Basin Drainage Province (X)	35
Santa Ana Drainage Province (Y)	36
San Diego Drainage Province (Z)	37
Data Collection Activities	38
CHAPTER IV. SURFACE WATER FLOW	41
Runoff	41
Storage in Surface Reservoirs	44
Water Imported to Coastal Southern California	48
Sewage Discharge to the Pacific Ocean and Tidal Estuaries	51
Data Collection Activities	51
CHAPTER V. GROUND WATER SUPPLY CONDITIONS	55
Ground Water Levels	55
Central Coastal Drainage Province (T), (Santa Barbara and San Luis Obispo Counties)	55
Los Angeles Drainage Province (U)	56
Lahontan Drainage Province (W), (Southern Portion)	56

Page

91

. . . .

	Colorado	o River	Basin	Drai	nage	Pro	vin	ce	(X)	• •				•				71
	Santa Ar	na Drain	age P	rovin	ce (1	()	•••			•	•••		•	•				•	71
	San Dieg	go Drain	age P	rovin	ce (2	2)	• •	•		•	•••								79
Artii	ficial Re	echarge		•••	•••	•	• •			•								•	79
			ŪΤ	MTO			10									10			
		CHAPTER	VI.		ER SU												•		89
Const	truction	of Dams	• •	•••	•••	•			•	•			•		•			•	89
Water	c Supply	Project	s	•••	•••	•	• •			•		•	•			•	•	•	89

FIGURES

. .

. . .

Water District Formation Activities

Figure Number

1	Area Orientation Map iii
2	Water Year Precipitation in Percent of Normal, October 1, 1962 September 30, 1963

TABLES

Table Number

l	Seasonal and Mean Precipitation of Selected Stations in Southern California	30
2	Cumulative Monthly Precipitation at San Luis Obispo, Los Angeles, San Diego and Barstow	31
3	Averages of Indexes of Precipitation for Stations in Hydrologic Units in Central Coastal Drainage Province for the 1962-63 Season	32
4	Averages of Indexes of Precipitation for Stations in Hydrologic Units in Los Angeles Drainage Province for the 1962-63 Season	33

		_
5	Averages of Indexes of Precipitation for Stations in Hydrologic Units in Lahontan Drainage Province for the 1962-63 Season	34
6	Averages of Indexes of Precipitation for Stations in Hydrologic Units in Colorado River Basin Drainage Province for the 1962-63 Season	35
7	Averages of Indexes of Precipitation for Stations in Hydrologic Units in Santa Ana Drainage Province for the 1962-63 Season	36
8	Averages of Indexes of Precipitation for Stations in Hydrologic Units in San Diego Drainage Province for the 1962-63 Season	38
9	Estimated 1962-63 Seasonal Unimpaired Runoff at Selected Stations in Southern California	42
10	Estimated Seasonal Discharge to the Pacific Ocean and Tidal Estuaries from Selected Streams in Southern California During 1961-62 and 1962-63	45
11	Water in Storage in Selected Surface Reservoirs in, or Supplying Water to, Southern California on October 1, 1962, and October 1, 1963	46
12	Colorado River Water Imported to Counties in Coastal Southern California During 1961-62 and 1962-63 Water Year	49
13	Quantities of Water Diverted from the Colorado River for Use in California During 1962 and 1963	50
14	Sewage Discharge to Pacific Ocean and Tidal Estuaries from Major Disposal Facilities in Southern California During 1961-62 and 1962-63	52
15	Average Changes in Ground Water Elevations in Hydrologic Units in Central Coastal Drainage Province During 1962 and 1963	57
16	Average Changes in Ground Water Elevations in Hydrologic Units in Los Angeles Drainage Province During 1962-63	61
17	Average Changes in Ground Water Elevations in Hydrologic Units in Lahontan Drainage Province During 1962-1963	69

Table Number		Page
18	Average Changes in Ground Water Elevations in Hydrologic Units in Colorado River Basin Drainage Province During 1962-1963	72
19	Average Changes in Ground Water Elevations in Hydrologic Units in Santa Ana Drainage Province During 1962-1963	74
20	Average Changes in Ground Water Elevations in Hydrologic Units in San Diego Drainage Province During 1962-1963	80
21	Summary of Principal Ground Water Recharge Activities in Southern California During the 1962-63 Water Year	86
22	Dam Projects Completed or Under Construction in Southern California During the 1962-63 Water Year	90

ATTACHMENTS

(The following attachments are bound after the Text of Bulletin No. 130-63, Volume V)

Attachment Number Page 1 Names and Areal Code Numbers Central Coastal Drainage Province (T) 1-i 2 Names and Areal Code Numbers Los Angeles Drainage Province (U) 2-i 3 Names and Areal Code Numbers Lahontan Drainage Province (W) 3-i 4 Names and Areal Code Numbers Colorado River Basin Drainage Province (X) 4-i 5 Names and Areal Code Numbers 5-i

APPENDIXES

(Appendixes A and B are bound with the Text of Volume V of Bulletin 130-63. Appendix C is bound separately under two covers. Appendixes D and E are bound together under a fourth cover.)

Appendix		Page
А	Climate	A-l
В	Surface Water Flow	B-l
С	Ground Water Measurements	
	Cl and C2. Central Coastal and Los Angeles Drainage Provinces	Cl-l
	C3 through C6. Lahontan, Colorado River Basin, Santa Ana, and San Diego Drainage Provinces	C3-1
D	Surface Water Quality	D-1
Ē	Ground Water Quality	E-l

PLATES

(Plates listed below are bound at the end of this cover.)

Plate Number

1	Drainage Province Boundaries
2	Precipitation During 1962-63 in Percent of 50-Year Mean
3	Representative Precipitation Characteristics in Southern California
4	Location of Wells at Which Water Level Fluctuations Are Shown, Central Coastal Drainage Province (T)
5	Location of Wells at Which Water Level Fluctuations Are Shown, Los Angeles Drainage Province (U)
6	Location of Wells at Which Water Level Fluctuations Are Shown, Lahontan Drainage Province (W)
7	Location of Wells at Which Water Level Fluctuations Are Shown, Colorado River Basin Drainage Province (X)

Plate Number

8 Location of Wells at Which Water Level Fluctuations Are Shown, Santa Ana Drainage Province (Y)

- 9 Location of Wells at Which Water Level Fluctuations Are Shown, San Diego Drainage Province (Z)
- 10 Representative Runoff Characteristics in Southern California
- 11 Historical Importations of Water to Coastal Southern California
- 12 Net Diversions of Water to California from the Colorado River
- 13A Hydrographs of Ground Water at Selected Wells in Southern California
- 13B Hydrographs of Ground Water at Selected Wells in Southern California

CALIFORNIA-RESOURCES AGENCY

WILLIAM E. WARNE, Director

TMENT OF WATER RESOURCES

August 27, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of the State of California

Gentlemen:

The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletins No. 23, 39, 65, 66, and 77. With the inauguration of the new series, publication of the earlier reports is suspended.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas. Page ii outlines the organization of the bulletin, its volumes and appendixes.

This report is Volume V, "Southern California". It includes a text which summarizes hydrologic conditions in this part of California during the 1963 water year (October 1, 1962 through September 30, 1963) and two appendixes of detailed hydrologic data: Appendix A, "Climate", and Appendix B, "Surface Water Flow". Appendixes C, D, and E will be published separately.

The collection and publication of data such as is contained in Bulletin No. 130 is authorized by Sections 225, 226, 229, 230, 232, 345, 12609, and 12616 of the Water Code of the State of California.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies, in order to satisfy specific needs of this State. Bulletin No. 130 is designed to present useful, comprehensive, accurate, and timely hydrologic data to the public.

Sincerely yours,

Willin 5. Warn

Director

ACKNOWLEDGMENT

The Department of Water Resources gratefully acknowledges the assistance and contributions of the many public agencies, private organizations, and individuals whose cooperation has greatly facilitated the preparation of this bulletin. In this regard, special mention is made of the following:

> California Disaster Office California Radiological Service California Water Quality Board City of Long Beach, Department of Public Health City of Long Beach, Water Department City of Los Angeles, Department of Public Health City of Los Angeles, Department of Water and Power City of San Bernardino City of San Diego Imperial Irrigation District Los Angeles County Flood Control District Orange County Air and Water Pollution Control Committee Orange County Flood Control District Riverside County Flood Control and Water Conservation District San Bernardino County Flood Control District San Luis Obispo County Flood Control and Water Conservation District The Metropolitan Water District of Southern California United States Geological Survey United States Weather Bureau United States Soil Conservation Service United States Public Health Service Ventura County Department of Public Works Ventura County Flood Control District

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor HUGO FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer

AREA MANAGEMENT

John R. Teerink Assistant Chief Engineer SOUTHERN DISTRICT James J. Doody District Engineer This bulletin was prepared under the direction of Ronald C. Hightower . . . Chief, Water Supply and Utilization Section by Ronald G. Hansen Senior Engineer, Water Resources Reuben Busch Water Resources Engineering Associate assisted by Harold W. Leeson Assistant Civil Engineer Sydney A. Zucker Assistant Civil Engineer Edwin S. Swing Junior Civil Engineer The water quality portions of this report were prepared under the direction of Mitchell L. Gould Chief, Water Quality Section by Robert C. Fox Senior Engineering Geologist Felix W. Cartier Water Resources Engineering Associate assisted by Eugene C. Ramstedt Assistant Civil Engineer Demetrius Kostas Junior Civil Engineer Joseph F. Scott Water Resources Technician II

Reviewed and coordinated by Statewide Planning Office, Data Coordination Branch

CHAPTER I. HYDROLOGIC CONDITIONS 1962-63

California is an area that is unique in many respects. Its climate has always been exceptional and the range of land forms within the State sets it apart from neighboring areas. California has often been described as being set apart, isolated so to speak, by features that prevail over wide areas adjoining the State. Perhaps it would be more appropriate to consider the State as a link between dissimilar regions rather than isolated by them. California does, in fact, span all the dissimilarities of climate and topography from the arid plateaus of the Great Basin to the marshy tidelands of the Pacific and from the rain forests of the Pacific Northwest to the parched plains of the Sonoran Desert.

Statewide

California climate is fostered by a balance between the slow forces of geology and turbulent storms born of the Pacific Ocean. The massive walls of the Rocky Mountains and the Sierra Nevada protect the State from all but a few thrusts of the dry, cold, polar continental air masses. Maritime air messes, originating far out in the Pacific, receive some impetus and direction from wind patterns of the troposphere and move toward the California coast. California lies in a transition zone between the prevailing westerlies that blow across the North Pacific and a calm high pressure zone, the horse latitudes, in the vicinity of 30 degrees north latitude. The horse latitudes, just south of California, buffer the State from many tropical storms which originate further to the south so that the north coast of California is crossed by more storms than the south coast. The Sierra Nevada and the Coscade Mountains, along the eastern border of the great Central Valley, receive much of their precipitation by orographic lifting of the maritime air masses, while interior lands of Southern California are shielded from maritime air masses by the Transverse Ranges and the northerly extension of the Peninsular Ranges. The water year, from October 1, 1962, through September 30, 1963, illustrates the extreme variability of weather conditions that occur in the State.

Average values summing up annual conditions for the whole State show the 1962-63 water year to have been about normal. A closer look at this apparent normality shows a series of extreme conditions which in combination resulted in nearly normal averaged values. Figure 2, showing water year precipitation in percent of 30-year mean of the years 1931-1960, indicates that normal annual precipitation amounts were recorded in the latitude of the north line of San Luis Obispo, Kern, and San Bernardino Counties. Recorded annual precipitation south of that latitude ranged to less than 50 percent of normal in the vicinity of San Diego and north of that latitude ranged to greater than 150 percent of normal in the mountains along the northern boundary of the State.

During 1962-63, even these annual precipitation values were composed of extremes. In mid-October a series of storm waves drenched Northern California, Oregon, and Washington. Rivers in Northern California were at near flood level; and Feather River at Oroville reached the highest October stage of record, inundating construction work at the Oroville Dam site. Southern California stayed dry. A midwinter drought followed, setting new records for lack of precipitation and for continuous days of fog in the Central Valley. Again, Southern California was dry.

-2-

FIGURE 2

The drought was broken by a three-day downpour at the end of January. Agein, flood conditions prevailed in Northern California and some areas, particularly in the upper Yuba River Basin, suffered from serious floods. Much of Southern California received moderate amounts of rain at this time.

During April, Northern Celifornia was covered by a ceries of storms: precipitation was moderate but continued for almost two weeks. The April roins, along with record late season snowfall during May, largely in the northern Sierra, built up snowpacks and assured a normal water supply during the summer. Southern California gained some precipitation but had a less than normal wet season which extended the dry trend that has prevailed in the southern part of the State since 1944.

Understandably, other hydrologic features showed abnormal responses. Streamflows alternated between extreme highs and extreme lows but were about normal during the summer. With the recurring threat of floods, operation of reservoirs was difficult, yet the amount of water stored in reservoirs at the end of the water year was greater than yearend storage during most of the preceding years. Still, a greater than usual proportion of winter rain flowed directly to the ocean. In Southern California both surface runoff and reservoir storage were below normal.

Ground water conditions followed the irregular pattern of precipitation. In the northern part of the State, the amount of water stored in the ground water basins generally increased. However, due to the intermittent distribution of precipitation, the increase of stored ground water was less than it chould have been. Throughout Southern California, where precipitation was well below normal, ground water levels generally continued to drop.

4

In general, during the 1962-63 season, hydrologic conditions were about normal for the State except the distribution of the normal supply was unusual, the northern part of the State was deluged while Southern California again was below normal.

Southern California

The variability of California climate referred to above is most pronounced in the southern part of the State, so that it is usually difficult to make generalized statements concerning hydrologic conditions. For example, in Southern California mean precipitation can be found to vary in a distance of less than 50 miles from over 40 inches per year to nearly as little as 2 inches per year.

Generally mild climates prevail along the coast because of the proximity of the Pacific Ocean. In the southernmost coastal areas a variety of tropical plants can be grown because of the infrequent occurrence of frost and snow. Because most of the coastal area is mountainous, climatic conditions in the inland areas are different from those on the coast. A series of high mountain ranges, extending from Santa Barbara County east to the San Bernardino Mountains and then southerly through San Diego County into Mexico, have a sharply demarcated effect on climate. The series of mountain ranges extending from the Tehachapis northeasterly and then northerly to merge with the Sierra Nevada causes a similar effect. On the leeward, or inland, side of these mountain ranges, desert conditions generally prevail with wide temperature extremes in the higher deserts. The higher mountains sustain a considerable growth of timber because of the relatively abundant precipitation which can reach to an average of over 40 inches per year. The major part of the precipitation in the

-5-

higher mountains is in the form of snow; however, except for the eastern slopes of the Sierra Nevada in Mono and Owens Valleys, accumulated snowpack which produces runoff in the spring and summer is generally not a major water supply factor because the snow usually melts too rapidly to accumulate. Snowfall is important, though, to the natural and artificial recharge of several ground water basins because the precipitation does not run off immediately, thus allowing time for percolation.

Southern California is similar to the rest of the State in that most of the precipitation occurs during the winter months. Precipitation during the months of June through September is usually insignificant. Exceptions occur in the mountain and desert areas where there are occasional summer thunderstorms. On rare occasions, summer tropical storms reach the southern part of the State.

The 1962-63 season is the 19th in a period of generally subnormal precipitation for most of Southern California. During this period, seasonal precipitation that was significantly above normal occurred only three times, the last instance being the previous 1961-62 season. Thus it may be said that a condition of drought is becoming a way of life in Southern California. The severity of the protracted period of drought can be illustrated by the water storage in the major surface reservoirs in San Diego County which contain mostly local runoff. On May 1, 1963, at the close of the runoffproducing season, ll reservoirs contained 45,200 acre-feet, or 7.1 percent of their capacity of 634,650 acre-feet. One reservoir in San Diego County, San Vicente, which stores imported Colorado River water, contained 59,065 acre-feet on the same date. This example also illustrates the dependence of large areas of Southern California on imported water.

-6-

On February 1, 1963, the outlook for supplies of local water was even more bleak than the example cited above. A record-breaking dry year was in prospect, with large areas of Southern California having received less than 10 percent of normal seasonal precipitation by that date. The alarming nature of this situation can be emphasized by pointing out that by the first of February Southern California normally has received about half of the season's precipitation. Exceptions to the above condition were northern San Luis Obispo County and the Mono-Owens region, which shared in the above normal precipitation received by that time in northern parts of the State. However, the bleak outlook was modified by significant precipitation that began to arrive in February and continued through May and partly into June. By July 1, 1963, precipitation was at least 50 percent of normal in most of Southern California. The San Diego area was an exception in having less than 40 percent of normal precipitation. In San Luis Obispo County precipitation for the season was near or above normal, and in parts of the Mono-Owens region it was over 200 percent of normal, partly due to heavy snowfall late in the season. Although beginning as a severe drought year, drier than any on record, the season became a routine year of ordinary precipitation deficiency. The late spring precipitation gave an added bonus in the form of postponing the beginning of the brush and forest fire season.

During September 1963, unusually early precipitation occurred in the extreme southern part of the State, with much of San Diego County receiving over 2 inches, and at high elevations in Los Angeles County over 5 inches were recorded. The storms extended over the Colorado Desert area, where extensive crop damage resulted from rainfall which in places

-7-

exceeded 2 inches. The extreme southern part of the Lehontan Drainage Province received over 6 inches of precipitation at the higher elevations. An important effect of the storms was that the brush and forest fire hazard ended earlier in the season than usual.

In Southern California the impact of a deficiency in precipitation varies with geographical area. San Luis Obispo, Santa Barbara, and Ventura Counties have relied solely on local supplies of water, a large part of which is surface runoff; therefore, an extended precipitation deficit in these areas might cause an emergency situation. In the Los Angeles Coastal Plain area, however, imported water supplies, together with a large supply of ground water, are presently adequate to withstand the impact of an extended drought period. In San Diego County no large ground water basins exist, so that water supplies must come mostly from local surface runoff or be imported from the Colorado River. Dry periods in this area increase the cost of water by requiring the purchase of more imported water. In the upper Santa Ana River drainage area, precipitation deficiency causes increased overdraft of ground water and increased imports of Colorado River water. The Colorado River Drainage Province relies mostly on imported Colorado River water, and deficient precipitation may be welcomed rather than lamented because huge crop losses could result from untimely rainfall. In the southern part of the Lahontan Drainage Province, precipitation is important mostly for ground water recharge, since there is no major surface runoff except in Owens Valley and Mono Basin.

In San Luis Obispo, Santa Barbara, and Ventura Counties there was a considerable carry-over of local water stored in surface reservoirs

-8-

from the previous 1961-62 season. In Owens Valley and Mono Basin there was a large increase in reservoir storage due to the heavy precipitation in the spring of 1963. The reservoirs on the Colorado River which contain water imported into Southern California showed a considerable decrease in water in storage. There was no significant amount of local water in storage in the remaining reservoirs of Southern California at the end of the 1963 water year.

In summary, the water year ending on September 30, 1963, was another year of generally deficient precipitation in Southern California with resultant deficient runoff and a lack of local water for ground water recharge. Reservoir storage generally declined. Water levels continued to decline in many basins. A notable exception was the Los Angeles Coastal Plain in Los Angeles and Orange Counties where the continuing spreading of imported water and controlled pumping actually resulted in a small rise in vater levels.

-9-

CHAPTER II. INTRODUCTION TO DATA ACTIVITIES

This is the first report in the Bulletin No. 130 series entitled "Hydrologic Data", and supersedes 31 years of publication of the annual report in the Bulletin No. 39 series and 7 years of publication of the two water quality reports, Bulletins Nos. 65 and 66, on surface and ground water quality, respectively. Consolidation of the three series of reports into the Bulletin No. 130 series and the expansion of the scope of the presentation of data to include the publication of climatological data not published elsewhere, is designed to enhance the value of these reports and considerably reduce the amount of time involved in consolidating hydrologic data by users. Furthermore, this report is a part of a standardized and coordinated reporting procedure for the State of California, which also enhances the availability of hydrologic data and gives an annual summary of hydrologic conditions.

Discussions of ground water recharge, weather modification, sewage discharge to the Pacific Ocean and its tidal estuaries, and miscellaneous activities affecting water supply conditions were added to previous reports and are included in this series to provide a more complete description of hydrologic conditions. Precipitation data which have not been included in the appendixes subsequent to Bulletin No. 39-58, published in August 1960, will be published in later reports in the Bulletin No. 130 series. Subsequent bulletins in this series are planned to include the publication of evaporation, wind, temperature, and agroclimatic data.

Volume V of Bulletin No. 130-63 is itself published under four covers. The first cover contains the text and Appendixes A and B. The

-11-

second and third covers contain Appendix C. The fourth cover contains Appendixes D and E.

Objectives and Scope

The purpose of this report is to provide a useful source of information for all interested in water development and supply in Southern California. The basic data programs of the Department of Water Resources are designed to supplement the activities of other agencies to provide a basis for effective water resource management. This report is designed to meet the needs of the Department and the public for hydrologic data.

This report contains a discussion of hydrologic conditions in Southern California for the 1962-63 season, with supporting basic data compiled, and in many cases collected, by the Department of Water Resources and other water agencies operating in the Southern California area. Presented in the report are data on precipitation, surface streamflow, reservoir storage, and elevation of the surface of ground waters, including the consideration of the quality of surface and ground waters. Information is also given on the activities of water agencies.

Data Collection Activities

The major portion of the information on ground water level conditions in Southern California is obtained by local water agencies with the Department of Water Resources acting as the collector and central compiling agency for these records. The Department itself routinely measures only approximately 400 wells semiannually for the collection of water level information. The Department also collects ground water level information during special investigations conducted from time to time in various places throughout Southern California.

-12-

The U. S. Geological Survey collects ground water level elevation information in Southern California under a cooperative program between the State of California and the United States government whereby funds are provided by the State to the Survey on a matching basis. The Survey conducts two ground water level measuring programs under this cooperative agreement: (1) a routine measuring of selected wells mainly in the desert areas in Southern California, end (2) a measuring of ground water levels during special investigations of localized areas in Southern California. All these records are published in the Bulletin No. 130 series for the appropriate year.

Methods and Procedures

The use of machine processing procedures facilitated preparation of certain of the appendixes to this report. Ground water level data, and ground water quality data were punched onto cards, tabulated, checked, and in certain cases statistics were calculated by a digital computer. In connection with these procedures, it was necessary to adopt coding or numbering systems to designate hydrologic units in which these data appeared and also for the identification of the specific data. These coding systems are described in the following paragraphs.

Hydrologic Area Coding System

In the report series preceding the Bulletin No. 130 series, the procedure for the definition of areas was to use ground water basins, listing them by a decimal numbering system. Because of widespread use of boundaries for areas based on different criteria and the necessity for filing data from hydrologic stations not located on ground water basins,

-13-

much confusion ensued regarding just what area was being discussed. and much additional work on the part of hydrologists was required to assemble data for the particular area being considered. Accordingly, an areal designation system was developed which would provide uniform boundaries of geologic and hydrologic significance for utilization in departmental investigations. A system of coding was also developed that would better relate areas of interconnecting hydrologic significance to facilitate the filing, separation and recovery of basic data by machine methods. and at the same time provide a basis for a coding procedure that would have statewide application. For these reasons, a new system for designating areas for data filing and retrieval was developed for Southern California. The system is described in a DWR Office Report entitled "Names and Areal Code Numbers of Hydrologic Areas in the Southern District", dated April 1964. The data in this Volume V are filed according to the new system of areal designation, which is briefly described here. Tables that cross-reference the new system to the old system are included as Attachments 1 through 6. They are bound at the back of this report.

The areal designation system for the Southern District comprises a series of major drainage provinces which are further subdivided into hydrologic units, hydrologic subunits, and hydrologic subareas. The boundaries of the drainage provinces are shown on Plate 1, "Drainage Province Boundaries".

Boundaries and Definitions. A drainage province is a geographic area, generally equivalent in area and configuration to the water pollution control board regions as defined in Chapter 4, Division 7, of the State Water Code, except that all province boundaries are drainage divides.

-14-

A hydrologic unit meets one or the other of the following descriptions, the boundaries of which are defined by surface drainage divides:

- In general, the total watershed area, including water-bearing and nonwater-bearing formations, such as the total drainage area of the San Diego River Valley;
- 2. In coastal areas, two or more small contiguous watersheds having similar hydrologic characteristics, each watershed being directly tributary to the ocean and all watersheds emanating from one mountain body located immediately adjacent to the ocean: or
- In desert areas, a closed drainage area with a difference in elevation between valley floor and lowest point on the drainage divide of 40 feet or more.

A hydrologic subunit is a major logical subdivision of a hydrologic unit, including water-bearing and nonwater-bearing formations, best typified by a major tributary of a stream, a major valley or a plain along a stream containing one or more ground water basins and having closely related geologic, hydrologic, and topographic characteristics.

Subunit boundaries are based primarily on drainage boundaries. However, where strong subsurface evidence indicates that a division of ground water exists, the subunit boundary may be based on subsurface characteristics.

-15-

Although political boundaries usually have no hydrologic significance, they may be used as subunit boundaries when they have legal status with respect to water supply, or there is very strong local custom regarding use of the boundary. For example, the Los Angeles-Orange county line, which has historically been considered to be the southeastern boundary of the Coastal Plain of Los Angeles County, was deemed important enough to prompt its adoption as a subunit boundary, although hydrologically, geologically, and topographically, there is no reason to do so.

A hydrologic subarea is a logical subdivision of a hydrologic subunit which may include either water-bearing or nonwater-bearing formations or both. Where possible, a hydrologic subarea includes one <u>known</u> ground water basin* and its tributary area. In areas which are essentially nonwater-bearing, the subarea division was based only on surface drainage conditions, and such factors as locations of gaging stations were given due consideration.

<u>Variations from Previous Coding Systems.</u> It should be noted that the areal designation system, described here, is designed to separate data according to areas of hydrologic significance. However, the system, as developed, does not differentiate between ground-water-bearing formations

^{*}A ground water basin consists of an area underlain by permeable materials, the basin including both the surface area and the underlying permeable materials. The permeable materials must be generally capable of furnishing a water supply to wells of moderately heavy draft, i.e. must be water-bearing. Ground water basins are separated from each other, or may be subdivided into ground water subbasins, by the following features and conditions, listed in approximate order of desirability as boundaries; nonwater-bearing rock, constriction in permeable materials, fault, zone of low permeability or of change to lower permeability, topographic ridge, shoreline of a lake, political boundary, or ground water divide.

and nonground-water-bearing tributary areas. The boundaries of groundwater-bearing formations are delineated on master quadrangle sheets in the Southern District Office. Furthermore, forebay areas of a ground water basin were not separated from the rest of the basin. For instance, the Los Angeles Forebay Area, the Montebello Forebay Area, and the Central Coastal Plain Pressure Area were combined into a single hydrologic subarea. Similarly, the Mound Pressure Area, the Oxnard Forebay Area, and the Oxnard Plain Pressure Area were combined into a single hydrologic subarea.

In connection with the development of this areal designation system, a review was made of desert areas in the Lehontan and Colorado River Basin Drainage Provinces which revealed numerous closed drainage basins, or sinks, whose valley floors are slightly lower than the lowest point on their drainage divides. In many instances flood runoff, however infrequent, could fill the lower portions of these basins and they would become tributary to adjacent basins. After a careful evaluation of this situation, it was concluded that in these cases a minimum difference of 40 feet between valley floor and drainage divide should be the criterion for the definition of a hydrologic unit.

The eight islands off the Southern California coast were incorporated within drainage provinces according to the county to which the island belongs. The three Santa Barbara County islands (San Miguel, Santa Rosa, and Santa Cruz) were grouped as the Santa Barbara Channel Islands Hydrologic Unit and included within the Central Coastal Drainage Province, while the two Ventura County islands (Anacapa and San Nicolas) and the three Los Angeles County islands (Santa Barbara, Santa Catalina, and San Clemente) were grouped as the San Pedro Channel Islands Hydrologic

-17-

Unit and included within the Los Angeles Drainage Province. Each island was made a hydrologic subunit so that it could be subdivided into hydrologic subareas in the future.

Strict adherence to the foregoing definitions, which are based on drainage areas, required some deviation from the historically used system of Water Quality Investigations Report No. 3, "Ground Water Basins in California", November 1952. Drainage province boundaries in the Southern District, however, match regional water pollution control board boundaries, with the exception of the boundary between Water Pollution Control Board Regions Nos. 4 and 8 which uses the Los Angeles-Orange and Los Angeles-San Bernardino county line, while the boundary between Los Angeles and Santa Ana Drainage Provinces uses the drainage divide between the San Gabriel and Santa Ana River systems. In cases where a ground water basin is so located as to be in two adjacent hydrologic units due to drainage boundary considerations, each of the two parts was given subarea status so that, although the data are filed separately, they may be easily combined by machine. An example of this is the Pomona Ground Water Basin, which was split by the boundary line of Los Angeles and Santa Ana Drainage Provinces and resulted in two subareas.

<u>Areal Designation Code</u>. As stated previously, a principal purpose of the areal designation system is the arrangement and coding of basic data to facilitate machine handling. The code developed for this is in the form A-ll.Al, consisting of two alphabetical characters and three digits. The alphabetic designations were adopted to permit the expansion of these spaces beyond ten digits while retaining the fiveitem code.

-18-

The alphabetical character to the left of the dash refers to the drainage province which corresponds to the regional water pollution control board boundaries, with the exception of the Los Angeles-Orange and Los Angeles-San Bernardino county boundaries. Drainage province designations and the corresponding water pollution control board region designations are as follows:

	Drainage Province Designation	Water Pollution Control Board Region Designation
Central Coastal	T	3
Los Angeles	U	14
Lehontan	W	6
Colorado River Basin	х	7
Santa Ana	Y	8
San Diego	Z	9

The last letters of the alphabet were used for the data in the southern portion of the State.

The final four positions of the areal designation code comprise two digits to the left of the decimal, which refer to the hydrologic unit, and one alphabetical character and one numerical digit to the right of the decimal, which refer to the hydrologic subunit and hydrologic subarea, respectively. The following is a sample of this code:

Areal Designation	Code
Los Angeles Drainage Province	U-00.00
Los Angeles-San Gabriel River Hydrologic Unit	U-05.00
Coestal Plain of Los Angeles County Hydrologie Subunit	U- 05.A0
Palos Verdes Hydrologic Subarea	U-05.Al

-19-

West Coast Hydrologic Subarea	U-05.A2
Santa Monica Hydrologic Subarea	U-05.A3
Hollywood Hydrologic Subarea	U-05.A4
Contral Hydrologic Subarea	U-05.A5
San Fernardo Hydrologic Subunit	U-05.BO
San Fernando Hydrologic Subarea	U-05.Bl
Sylmar Hydrologic Subarea	U-05.B2
Tujunga Hydrologic Subarea	U-05.B3
Verdugo Hydrologic Subarea	U-05.B4
Eagle Rock Hydrologic Subarea	U-05.B5

Attachments 1 through 6 list the code associated with each hydrologic subunit in Southern California along with name and number of the previously designated ground water basins.

Station Numbering Systems

In addition to the coding procedure to define areas of hydrologic significance within Southern California, it is necessary to identify each item of hydrologic information in order to provide for its analysis. The designation of several types of data is done simply by the name of the station, such as reservoirs in the case of storage data, agencies in case of water import and sewage export data, and at the present time both surface water stations and precipitation stations also have a common name designating or identifying the station. However, for filing and analysis, it has become convenient to identify these hydrologic data collection stations with their particular numbering system. This is imporative when large masses of data are involved.

-20-

The following is a description of station number systems used in this report.

Precipitation Station Numbering System. As used in this report, precipitation stations are identified by their latitude and longitude supplemented by the name of the station. A list of the stations used in this report, together with other data, are given in Appendix A.

<u>Well Numbering System</u>. The state well numbering system used in this report is based on township, range, and section subdivision of the Public Lend Survey. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number of a well, assigned in accordance with this system, is referred to as the state well number.

Under the system, each section is divided into 40-acre tracts lettered as follows:

D	С	В	А
Е	F	G	Н
М	L	K	J
N	Р	ୟ	R

Note that I and O are omitted in the grid above.

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned state well numbers.

For example, a well which has the number 16N/3E-17K1, M would be in Township 16 North, Range 3 East, Section 17, Mount Diablo Base and Meridian, and would be further designated as the first well assigned a state well number in tract K. Well numbers are referenced to the Mount Diablo Base and Meridian (M) or the San Bernardino Base and Meridian (S).

Surface Water Station Number System. In addition to the common terminology for a hydrologic data collection station on a body of surface water, such as the name of the stream and its place on the stream or the name of a reservoir, there are two commonly used numerical systems for identifying surface water hydrologic data collection stations.

The first system is a six-digit number used to identify streamgaging stations, which system is based on a hydrologic area numbering concept. The first digit is an alphabetical designation for the hydrographic area; the second digit is a number and indicates the river basin; the third, a number, designates the reach of the stream; and the last three digits are sequence numbers which are assigned to the stations. The sequence numbers start at the downstream end of the reach and increase in the upstream direction. A list of these stations for which data are published is included in Appendix B, "Surface Water Flow".

The other system used to identify stations for the collection of surface water quality data is an arbitrary one consisting of two digits which define a particular surface water sample station. This system was started by the State Water Pollution Control Board in April 1951. Both number systems are supplemented by the name of the station. A list of stations for which data are published here and a map showing their locations are included in Appendix D.

-22-

Definition of Seasons

Reference is made to a number of periods or seasons in the description of water supply conditions presented in the ensuing chapters of this report. Because the time span for each of these periods or seasons depends upon the type of data being accumulated, the periods are defined in the following paragraphs.

Precipitation

Precipitation data cover the 12-month period, July 1 through June 30. This conforms to standard United States Weather Bureau practice.

Surface Runoff

Surface runoff data are compiled for the water year, which is the 12-month period of October 1 through September 30. Artificial recharge and imported water data are also related to this period.

Sewage Disposal

Because of local practice, sewage disposal data are reported for the 12-month period, July 1 through June 30.

Reservoir Storage

The quantity of water in storage in surface reservoirs having individual capacities in excess of 10,000 acre-feet is given as of October 1 of each year.

Ground Water Levels

The appendixes to this report contain ground water level data for the period July 1, 1962, through June 30, 1963. Because ground water levels are generally lowest in the fall (following the summer period of

-23-

heaviest extraction) and highest in the spring (following the winter period of recharge and reduced extractions), the fall and spring measurements of ground water elevations are considered to be the most significant and the most representative of the actual conditions of the ground water reserves. For this reason, most comparative measurements are made in the spring and the fall.

Prior Reports

One of the reports that the Bulletin No. 130 series has superseded is the Bulletin No. 39 series, entitled "Records of Ground Water Levels at Wells". The first one was published in 1932 as a part of the investigation initiated by Chapter 832, Statutes of 1929. Since then, water levels at selected wells have been published annually in Bulletins Nos. 39-A through 39-W, and Bulletins Nos. 39-56 through 39-62. Bulletin No. 39-56, the first of the numbered series, followed Bulletin No. 39-W without interruption in the annual continuity of data. This Bulletin No. 130-63 also follows Bulletin No. 39-62 without interruption in the annual continuity of data and inaugurates a more extensive compilation of hydrologic data.

Bulletins Nos. 65 and 66 commenced with reports covering the 1955-56 period and these reports continued through the publication of Bulletin No. 65-62, dated April 1965, and Bulletin No. 66-62, dated September 1964. The Bulletin No. 130 series succeeds the Bulletins Nos. 65 and 66 series without a break in the continuity of the data.

Since 1930, many bulletins covering various aspects of the hydrology of Southern California have been published by the Department of

-24-

Water Resources and its predecessor, the Division of Water Resources of the Department of Public Works. These bulletins include data on water use, ground water levels, quality of water, value and cost of water for irrigation, water losses and evaporation data, ground water geology, and evaluation of overdraft on ground water basins in Southern California.

In addition, water conditions reports are prepared by the Department of Water Resources as of the first of each month from February through May as the annual Bulletin No. 120 series. These reports contain forecasts of the anticipated runoff for the ensuing April to July snowmelt period. The May 1 report contains a section on ground water conditions as of the date of the report.

Contemporary Basic Data Reports

This report is one of several related reports issued annually by the Department of Water Resources, designed primarily to publish basic hydrologic data and to present discussions of water supply conditions. Concurrent reports, not all of which are published annually, are listed below. The year indicated is that of the latest publication.

Bulletin No.

23 - 61	"Surface Water Flow for 1961". August 1963.
65 - 62	"Quality of Surface Waters in California, 1961". April 1965.
66-62	"Quality of Ground Waters in California, 1961-1962, Part II, Southern California". September 1964.
68 - 62	"Reclamation of Water from Sewage and Industrial Wastes in California, July 1, 1955 - June 30, 1962". June 30, 1962.
73	"Evaporation from Water Surfaces in California". October 1959.

-25-

- 77-60 "Ground Water Conditions in Central and Northern California; 1959-60", January 1963
- 91-1 "Data on Wells in the West Part of the Middle Mojave Valley Area, San Bernardino County, California", June 1960
- 91-2 "Data on Water Wells and Springs in the Yucca Valley-Twenty-nine Palms Area, San Bernardino and Riverside Counties, California", June 1960
- 91-3 "Data on Water Wells in the Eastern Part of the Middle Mojave Valley Area, San Bernardino County, California", August 1960
- 91-4 "Data on Water Wells in the Willow Springs, Gloster, and Chaffee Areas, Kern County, California", August 1960
- 91-5 "Data on Water Wells in the Dale Valley Area, San Bernardino and Riverside Counties, California", March 1961
- 91-6 "Data on Wells in the Edwards Air Force Base Area, California", June 1962
- 91-7 "Data on Water Wells and Springs in the Chuckwalla Valley Area, Riverside County, California", May 1963
- 91-8 "Data on Water Wells and Springs in Rice and Vidal Valley Areas, Riverside and San Bernardino Counties, California", May 1963
- 91-9 "Data on Water Wells in Indian Wells Valley Area, Inyo, Kern, and San Bernardino Counties, California", May 1963
- 91-10 "Wells and Springs in the Lower Mojave Valley Area, San Bernardino County, California", December 1963

Definition of Terms

A list of definitions and terms as used herein follows:

Second-foot or cubic foot per second is a unit rate of discharge of water.

It is a cubic foot of water passing a given point in one second.

<u>Acre-foot</u>, used in measuring the volume of water, equals the quantity of water required to cover one acre to a depth of one foot, 43,560 cubic feet or 325,850 gallons.

- Drainage area of a stream at a specified location is that area which is enclosed by a drainage divide.
- <u>Unimpaired runoff</u> is the flow that would occur naturally at a point in a stream if there were: (1) no upstream control such as dams and reservoirs; (2) no artificial diversions or accretions; and (3) no changes in ground water storage resulting from development. Unimpaired runoff is computed from measured flow allowing for man-made changes in natural conditions.
- Water year is the 12-month period from October 1 of any year through September 30 of the subsequent year, and is designated by the calendar year in which it ends.
- <u>Mean</u> is the average of a group of items obtained by adding together all items and dividing by the total number of items used. Isohyetal line is a line connecting points of equal precipitation.

CHAPTER III. CLIMATE

As was pointed out earlier, the 1962-63 season was generally one of subnormal precipitation in most of Southern California. This was in marked contrast to the above average rainfall of the previous season. Further manifestations of this condition were the low runoff and decreased storage in those surface reservoirs storing only local waters, except in the Owens Valley area. The following pages discuss the precipitation situation in Southern California during the 1962-63 season.

Precipitation

Precipitation in coastal Southern California varied from slightly above normal in San Luis Obispo County, diminishing gradually in a southerly direction, as indicated in Table 1, to a minimum of 38 percent at San Diego. In the desert areas, it was well below normal, whereas in Inyo County, it was about normal. The general distribution of precipitation during the 1962-63 season is shown on Plate 2, "Precipitation During 1962-63 in Percent of 50-Year Mean Precipitation". It should be noted that Figure 2 is based upon water year, whereas Plate 2 is based upon fiscal year.

Plate 3, "Representative Precipitation Characteristics in Southern California", gives an indication of the effect of the 1962-63 season at selected stations on the long-range water supply. From this plate, it may be seen that, while above normal precipitation occurred in the extreme northern portion of coastal Southern California, the overall picture is one of extreme drought. The total precipitation that accumulated during the 19-year period of deficiency which began in 1944, approximates the precipitation of two to three normal years.

-29-

TABLE 1

SEASONAL AND MEAN PRECIPITATION AT SELECTED STATIONS IN SOUTHERN CALIFORNIA

Station	County	: 50-year : mean, :1897-1947, :in inches	Tn inchos	season In percent of mean		
	Coasta	1				
Paso Robles San Luis Obispo Santa Maria Santa Barbara Ventura Los Angeles Pomona Santa Ana San Bernardino Oceanside San Diego	San Luis Obispo San Luis Obispo Santa Barbara Santa Barbara Ventura Los Angeles Los Angeles Orange San Bernardino San Diego San Diego	15.82 21.68 13.52 18.56 15.59 14.81 18.21 14.16 17.21 12.38 10.36	17.09 24.80 11.71 15.73 10.73 8.38 9.67 5.89 8.31 5.90 3.98	108 114 87 85 69 57 53 42 48 48 38		
Interior						
Bishop Barstow Blythe Brawley	Inyo San Bernardino Riverside Imperial	6.14 4.17 4.03 2.40	6.10 .96 1.83 1.37	99 23 45 57		

Table 2 indicates the cumulative monthly precipitation at selected stations in Southern California. Note that the three stations in coastal Southern California receive most of their seasonal rainfall during the winter months, whereas the desert station at Barstow receives precipitation in a relatively more uniform sequence during the season.

Central Coastal Drainage Province (T), (Santa Barbara and San Luis Obispo Counties)

Precipitation data for those hydrologic units or subunits in the San Luis Obispo and Santa Barbara portions of the Central Coastal

CUMULATIVE MONTHLY FRECIPITATION AT SAN LUIS OBISPO, LOS ANGELES, SAN DIEGO AND BARSTOW

	: Cumulative : tation at	Cumulative monthly precipi- tation at San Luis Obispo	monthly precipi- San Luis Obispo	: Cumulative monthly precipi- : tation at Los Angeles	e monthly preci at Los Angeles	precipi- ngeles	: Cumulative : tation	Cumulative monthly precipi tation at San Diego	precipi- : iego :	Cumulative tation	Cumulative monthly precipi tation at Barstow	precipi- ow
Month :	: 50-year :	1962-63	Season	: 50-year :	1962-63 Season	Season	: 50-year :	1962-63	Season :	50-year :		Season
	: mean : :1897-1947,: :in inches :	In inches	: In : percent : of mean	In : mean : percent :1897-1947,: of mean :in inches :	In inches	. In percent of mean	: mean : :1897-1947 : :in inches :	In inches	In percent : of mean :	: mean : :1897-1947 : :1n inches :	In : inches	In percent of mean
July	0.00	0.00	0	10.01	00.00	0	0.03	0.00	0	0.15	00.00	0
August	0.04	0.00	0	0.03	0.00	0	60.0	0.00	0	0.41	0.00	0
September	0.27	0.00	0	0.31	00.00	0	0.23	0.00	0	0.58	00*00	0
October	1.08	1.52	041	0.90	0.12	13	0.79	10.0	Т	0.87	0.24	28
November	2.76	1.56	57	1.96	0.12	9	1.61	0.02	г	1.16	0.24	21
December	6.56	4.29	65	97.4	0.12	m	3.59	0.24	7	1.75	0.31	18
January	11.50	7.85	68	14.7	0.64	6	5.51	0.35	9	2.41	0.31	13
February	16.02	15.95	66	10.78	3.52	33	7.67	1.57	20	3.04	0.44	14
March	19.62	20.54	105	13.45	6.30	μŢ	9.32	2.90	31	3.72	0.61	16
April	20.96	24.38	911	14.40	8.24	57	10.05	3.61	36	3.98	0.90	23
Мау	21.54	24.71	511	14.74	8.24	56	10.32	3.70	36	4.08	0.90	22
June	21.68	24.80	ήΓΓ	14.81	8.38	57	10.36	3.98	38	4.17	0.96	23

TABLE 2

Drainage Province are presented in Table 3; the location of the units is shown on Plate 4, "Location of Wells at Which Water Level Fluctuations are Shown, Central Coastal Drainage Province (T)".

TABLE 3

AVERAGES OF INDEXES OF PRECIPITATION FOR STATIONS IN HYDROLOGIC UNITS IN CENTRAL COASTAL DRAINAGE PROVINCE FOR THE 1962-63 SEASON

Hydrologic unit or subunit	Code	:Number of: :stations :	0
Paso Robles Hydrologic Subunit San Luis Obispo Hydrologic Subunit Carrizo Plain Hydrologic Unit Santa Maria Hydrologic Subunit Sisquoe Hydrologic Subunit Cuyama Valley Hydrologic Subunit San Antonio Hydrologic Unit Lompoc Hydrologic Subunit Santa Ynez Hydrologic Subunit Headwater hydrologic Subunit Arguello Hydrologic Subunit South Coast Hydrologic Subunit	T-09.H0 T-10.B0 T-11.00 T-12.A0 T-12.B0 T-12.C0 T-13.00 T-14.A0 T-14.D0 T-14.E0 T-15.A0 T-15.C0	1 1 2	86 98 79 87 75 59 82 80 63 65 70 89
Central Coastal Drainage Province, San Luis Obispo and Santa Barbara Counties	Т	26	78

Precipitation in this area varied from a minimum of 59 percent of the mean for the 50-year period 1897-98 through 1946-47 in the Cuyama Valley Hydrologic Subunit to a maximum of 98 percent of the mean in the San Luis Obispo Hydrologic Subunit. In general, the precipitation indexes are somewhat higher in San Luis Obispo County than they are in Santa Barbara County with the City of San Luis Obispo recording 24.80 inches for an index of 114 while the City of Santa Barbara had only 15.73 inches for an index of 85. The average of precipitation indexes for the 26 stations in the province was 78 percent of the mean.

There were no reports of weather modification activities in this province during the 1962-63 water year.

-32-

Los Angeles Drainage Province (U)

In the Los Angeles Drainage Province, the average precipitation index for the 1962-63 season was 57 percent of the 50-year mean, 1897-98 through 1946-47 as shown in Table 4. The average areal precipitation index

TABLE 4

AVERAGES OF INDEXES OF PRECIPITATION FOR STATIONS IN HYDROLOGIC UNITS IN LOS ANGELES DRAINAGE PROVINCE FOR THE 1962-63 SEASON

Hydrologic unit or subunit	Code	:Number of: :stations :	0
Lower Ventura River Hydrologic Subunit Upper Ventura River Hydrologic Subunit Ojai Hydrologic Subunit Oxnard Plain Hydrologic Subunit Santa Paula Hydrologic Subunit Sespe Hydrologic Subunit Piru Hydrologic Subunit Upper Santa Clara River Hydrologic Subunit Calleguas-Conejo Hydrologic Subunit Topanga Hydrologic Subunit Malibu Creek Hydrologic Subunit Camarillo Hydrologic Subunit	U-02.A0 U-02.B0 U-02.C0 U-03.A0 U-03.B0 U-03.C0 U-03.D0 U-03.E0 U-03.F0 U-04.A0 U-04.B0 U-04.D0	5 5 6 7 5 21 11 1	68 71 56 61 58 65 56 45 64 61 78 71
Coastal Plain of Los Angeles County Hydrologic Subunit San Fernando Hydrologic Subunit Raymond Hydrologic Subunit San Gabriel Valley Hydrologic Subunit Spadra Hydrologic Subunit Anaheim Hydrologic Subunit Los Angeles Drainage Province	U-05.A0 U-05.B0 U-05.C0 U-05.D0 U-05.E0 U-05.F0 U	24 43	67 52 53 48 56 <u>59</u> 57

for the units and subunits (shown on Plate 5, "Location of Wells at Which Water Level Fluctuations are Shown, Los Angeles Drainage Province (U)") within the province ranged from a low of 45 percent in the Upper Santa Clara River Hydrologic Subunit in Los Angeles County to a high of 78 percent in Malibu Creek Hydrologic Subunit in coastal Los Angeles County. Precipitation, as measured at the U. S. Weather Bureau Station located

-33-

atop the Federal Building in downtown Los Angeles, amounted to 8.38 inches, or 57 percent of the 50-year mean, which was 45 percent of the previous year's precipitation.

Weather modification operations were conducted by the Los Angeles County Flood Control District in the drainage area above San Gabriel Dam where ground-based silver iodide smoke generators were operated for a total of 602 hours during the season.

Lahontan Drainage Province (W), (Southern Portion)

In the Lahontan region, precipitation indexes were on the same order as those for the rest of Southern California, varying from a minimum of 23 percent of the mean in the Lower Mojave Hydrologic Unit to a high of 98 percent in Deep Springs Unit, as presented in Table 5. The locations of the units are shown on Plate 6, "Location of Wells at Which Water Level Fluctuations are Shown, Lahontan Drainage Province (W)". It is noted that

TABLE 5

AVERAGES OF INDEXES OF PRECIPITATION FOR STATIONS IN HYDROLOGIC UNITS IN IAHONTAN DRAINAGE PROVINCE FOR THE 1962-63 SEASON

Hydrologic unit or subunit	Code	:Number of: :stations :	0
Mono Hydrologic Unit Upper Owens Hydrologic Subunit Lower Owens Hydrologic Subunit Deep Springs Hydrologic Unit Searles Hydrologic Subunit Rose Hydrologic Subunit Indian Wells Hydrologic Subunit Antelope Hydrologic Subunit El Mirage Hydrologic Subunit Upper Mojave Hydrologic Subunit Lower Mojave Hydrologic Subunit Baker Hydrologic Subunit	W-01.00 W-03.B0 W-03.C0 W-21.A0 W-24.A0 W-24.B0 W-26.A0 W-28.A0 W-28.B0 W-28.B0 W-28.H0 W-28.H0	3 8 7 1 1 1 3 4 1 3 4 1 3 4 1 3 4	95 40 55 98 39 62 45 40 28 23 72 46

-34-

the pattern for this area is similar to that along the coast with the higher precipitation index values found in the more northern hydrologic units.

No weather modification activities were reported for the 1962-63 season in the Lahontan Drainage Province.

Colorado River Basin Drainage Province (X)

The average precipitation index for this province for the 1962-63 season was 47 percent of the 50-year mean 1897-98 through 1946-47, as shown on Table 6. The maximum precipitation index for this area was observed in the Ward Hydrologic Unit with minimums being recorded in the Needles and Coyote Wells Subunits. The locations of the units are shown on Plate 7, "Location of Wells at Which Water Level Fluctuations are Shown, Colorado River Basin Drainage Province (X)".

TABLE 6

AVERAGES OF INDEXES OF PRECIPITATION FOR STATIONS IN HYDROLOGIC UNITS IN COLORADO RIVER BASIN DRAINAGE PROVINCE FOR THE 1962-63 SEASON

Hydrologic unit or subunit	Code	:Number of: :stations :	0
Emerson Hydrologic Unit Twentynine Palms Hydrologic Subunit Ward Hydrologic Unit Needles Hydrologic Subunit Vidal Hydrologic Subunit	X-05.00 X-09.A0 X-12.00 X-13.00 X-15.A0	1 1 1 1 1	39 44 80 32 66
Palo Verde Hydrologic Subunit Palen Hydrologic Subunit Hayfield Hydrologic Unit Morongo Hydrologic Subunit San Gorgonio Hydrologic Subunit Coachella Hydrologic Subunit	X-15.D0 X-17.B0 X-18.00 X-19.A0 X-19.C0 X-19.D0	1 1 1 3	47 60 42 34 53 51
Borrego Hydrologic Subunit Mescal Bajada Hydrologic Subunit Imperial Hydrologic Subunit Coyote Wells Hydrologic Subunit	X-22.A0 X-22.C0 X-23.A0 X-23.B0	1 5	33 51 42 <u>32</u>
Colorado River Basin Drainage Province	х	35	47

There were no reports of weather modification activities in this province during the 1962-63 season.

Santa Ana Drainage Province (Y)

Precipitation was generally uniform throughout this province in terms of the percentage of the 50-year mean, which was 47 percent for the 1962-63 season. Available data indicate a minimum index of 30 percent at the Lake Mathews Hydrologic Subunit, with a maximum index of 55 percent being recorded in the San Bernardino Mountain Hydrologic Subunit. The average indexes of precipitation for stations within the Santa Ana Drainage Province are shown in Table 7, with the location of the units shown on Plate 8, "Location of Wells at Which Water Level Fluctuations are Shown, Santa Ana Drainage Province (Y)". Measured seasonal precipitation at the U. S. Weather Bureau Stations in Santa Ana and San Bernardino amounted to 5.89 and 8.31 inches, respectively, or 42 and 48 percent of the mean.

TABLE 7

AVERAGES OF	INDEXES C	F PRECIPIT	PATION FOR	R STATIONS IN
HYDROLOGIC	UNITS IN	SANTA ANA	DRAINAGE	PROVINCE FOR
	THE	1962-63 SH	EASON	

Hydrologic unit or subunit	Code	:Number of: :stations :	0
Lower Santa Ana Hydrologic Subunit Middle Santa Ana Hydrologic Subunit Lake Mathews Hydrologic Subunit Colton-Rialto Hydrologic Subunit Upper Santa Ana Hydrologic Subunit San Timoteo Hydrologic Subunit San Bernardino Mountain Hydrologic Subunit Perris Hydrologic Subunit San Jacinto Hydrologic Subunit Elsinore Hydrologic Subunit	Y-01.A0 Y-01.B0 Y-01.C0 Y-01.D0 Y-01.E0 Y-01.F0 Y-01.G0 Y-02.A0 Y-02.B0 Y-02.C0	3 10 9 1 1 3	49 46 30 47 50 45 55 48 49 47
Santa Ana Drainage Province	Y	80	47

Weather modification operations were conducted by the San Bernardino Valley Municipal Water District in the Santa Ana River watershed during the 1962-63 season. A total of 1,349 hours of operation was logged, using ground-based silver iodide smoke generators.

San Diego Drainage Province (Z)

Precipitation index in the San Diego Drainage Province was below normal for the fifth year in a row and the fifteenth since the present drought period began in 1944. The precipitation index for this province for the 1962-63 season was 45 percent. It will be noted from data presented in Table 8 that the areal average precipitation indexes ranged from a low of 28 percent in the Point Loma Hydrologic Subunit in the southern end of the province to a high of 63 percent in the Laguna Hydrologic Subunit situated on the coast in the northern extremities. The location of these units is shown on Plate 9, "Locations of Wells at Which Water Level Fluctuations are Shown, San Diego Drainage Province (Z)". Measured seasonal precipitation at the City of San Diego was only 3.98 inches, or 38 percent of the mean. The precipitation at San Diego during February 1963 was the smallest ever recorded during February for the 113 years of historical records. February is normally in the middle of the rainy season.

Weather modification operations were conducted by the Vista Irrigation District in the watershed of the San Luis Rey River above Lake Henshaw, where ground-based silver iodide smoke generators were operated for a total of 245 hours during the season.

-37-

AVERAGES OF INDEXES OF PRECIPITATION FOR STATIONS IN HYDROLOGIC UNITS IN SAN DIEGO DRAINAGE PROVINCE FOR THE 1962-63 SEASON

Hydrologic units or subunits	Code	:Number of: :stations :	Average index
Laguna Hydrologic Subunit San Juan Hydrologic Subunit San Clemente Hydrologic Subunit Ysidora Hydrologic Subunit Anza Hydrologic Subunit Bonsall Hydrologic Subunit Monserate Hydrologic Subunit Loma Alta Hydrologic Subunit San Marcos Hydrologic Subunit San Marcos Hydrologic Subunit Santa Maria Valley Hydrologic Subunit Santa Maria Valley Hydrologic Subunit Soledad Hydrologic Subunit Lower San Diego Hydrologic Subunit Doway Hydrologic Subunit Lower San Diego Hydrologic Subunit Dowas Hydrologic Subunit Lower San Diego Hydrologic Subunit Def Subunit Point Loma Hydrologic Subunit Lower Sweetwater Hydrologic Subunit Diego Mesa Hydrologic Subunit Lower Sweetwater Hydrologic Subunit Diego Subunit	: 00012 Z-01.A0 Z-01.B0 Z-02.A0 Z-02.G0 Z-03.A0 Z-03.B0 Z-03.C0 Z-04.A0 Z-04.E0 Z-04.F0 Z-04.F0 Z-05.A0 Z-05.D0 Z-05.E0 Z-05.E0 Z-06.A0 Z-06.B0 Z-07.D0 Z-08.B0 Z-08.B0 Z-08.C0 Z-09.A0 Z-09.B0 Z-09.C0 Z-10.B0 Z-11.B0	2 4 1 1 1 2 1 1 2 1 1 1 2 1 2 1 4 3 1 2 1 4 1 1 1	$\begin{array}{c} 63\\ 39\\ 48\\ 48\\ 58\\ 42\\ 47\\ 42\\ 53\\ 43\\ 42\\ 53\\ 43\\ 42\\ 53\\ 43\\ 42\\ 53\\ 43\\ 41\\ 50\\ 49\\ 42\\ 28\\ 44\\ 36\\ 41\\ 57\\ 44\\ 36\\ 41\\ 57\\ 43\\ 48\end{array}$
Campo Hydrologic Subunit San Diego Drainage Province	Z-11.HO Z	<u> 1</u> 43	<u>36</u> 45

Data Collection Activities

The data collection activities of the Department of Water Resources in the field of climatology are composed of operation of stations in relation to the State Water Facilities. In this regard, the Department operates and maintains climatological stations in the vicinity of proposed reservoirs in Southern California and has enlisted the cooperation of local agencies in assisting the Department in these efforts. The Department also collects and compiles data obtained by federal and local agencies, constituting by far the major part of the data. In addition, the Department of Water Resources has purchased meteorological equipment which is on loan to local governmental agencies for the collection of meteorological data by local personnel, providing for the completion of networks for climatological data collection.

.

CHAPTER IV. SURFACE WATER FLOW

Runoff in Southern California was generally for below normal during the 1962-63 water year, with the exception of the Owens River where 94 percent of the mean runoff below Long Valley was recorded. This situation in the Sierras was due, in part, to the late precipitation of the previous season and near normal precipitation for the current season in the Long Valley-Mono Lake area. Of particular concern is the San Diego Drainage Province where runoff in percent of the long-term mean approached the all-time low of the 1960-61 season.

This chapter discusses not only runoff but also discharge of surface water to the ocean, storage in surface reservoirs, Colorado River diversions, other imported water, and sewage discharge to the ocean. It concludes with details on the data collection activities of the Department.

Runoff

The estimated unimpsired runoff (runoff uneffected by the works of man) for selected stations representative of conditions in Southern California is presented in Table 9, together with a comparison of the mean for the 53-year period, 1894-95 through 1946-47. Estimated or measured maximum and minimum flows for each station during the period of record are also indicated.

Typical of most streams in coastal Southern California was the Arroyo Seco near Pasadena where the measured unimpaired runoff was 25 percent of normal. The measured flow of the Colorado River at Lee's Ferry, Arizona, uncorrected for upstream storage or diversion, was 6,268,000 acrefeet, or 53 percent of the average for the 34-year period 1922-23 through

-41-

ESTIMATED 1962-63 SEASONAL UNIMPAIRED RUNOFF AT SELECTED STATIONS IN SOUTHERN CALLFORNIA

In acre-feet

Station	: Period : of	1962-63	: 53-year :	Percent of	Maxi	Maximum ^b :	Mîni	Minimum ^b
	record		: mean	mean	Season	. Quantity	Season	Quantity
Central Coastal Drainage Province								
Arroyo Grande at Arroyo Grande Hu a sna River near Arroyo Grande	1939 to date 1959 to date	5,700 ^c 900	23,900 _d 17,200 ^d	24	190 6- 07 1906-07	76,200 _d 64,730 ^d	1930-31 _e	800 0d
Los Angeles Drainage Province								
Sespe Creek near Fillmore	1911-13			1				
Arroyo Seco near Pasadena Sente Anite Creak near	1927 to date 1910 to date	15,500 1,800	93,900 7,300	17 25	1940-41 1921-22	376,000 25 , 400	1950-51 1898-99	3,520 160
Sanda Auroa Vicea near Sierra Madre San Gabriel River near Azusa	1916 to date 1894 to date	1,700 24,600	4,920 122,000	34 20	1942-1:3 1921-22	16,600 419,000	1898-99 1960-61	210 1,250
Lahontan Drainage Province								
Owens River below Long Valley Rock Creek near Valvermo	1916 to date	157,800	168,500	64	1906-07	292,000	1930-31	73,010
Dan Great rear Jamaria	1938 to date	3,400	15,000	22	1,921-22	39,000	1950-51	1,380
neet Areev Hear Heateria	1929 to date	5,600	47,100 ^f	12	1921-22	177,000 ^g	1960-61	4,240 ^g
Colorado River Basin Drainage Province						e		
Colorado River at Lee's Ferry Colorado River at Hoover Dam	1911 to date 1933 to date	6,268,000 8,810,000	11,800,000 ^{ch} 11,168,000 ^c j	53 79	1916-17 194 1- 42	21,860,000 ^{cg} 17,880,000 ^{cg}	1933 - 34 1933-34	4,377,000 ^{cg} 5,058,000 ^{cg}

ESTIMATED 1962-63 SEASONAL UNIMPAIRED RUNOFF AT SELECTED STATIONS IN SOUTHERN CALIFORNIA (continued)

In acre-feet

				+202000	Mar	Mavimim ^b :	Minimum ^b	dmun
Station	Period	1962-63	: 53-year : . mean ^a :	Jo		· · · · · · · · · · · · · · · · · · ·	Segent	Quantity
	record			mean	Season	: Andrither of		
Colorado River Basin Drainage								
LIONTHCA CONCTINUE			بر در بر بر		00 0001	20 NTO NTO DO	1040-61	707.270 ⁰⁸
Colorado River at Yuma	1878 to date	1,134,000	5,646,000~	20	50-006T	20,010,000	10000	
Palm Canyon Creek near Palm Springs	1.930-41	011	3,580 ^k	Ч	1936-37	18,980 ⁵	1955-56	0.2 ^g
Santa Ana Drainage Province							00 208 -	030
Cucamonga Creek near Upland Santa Ana River near Mentone	1928 to date 1896 to date	1,560 17,850	6,190 70,600	25 25	1915-16 1915-16	280,000	1950-51	13,090
San Diego Drainage Province								CCc
Munutato Creak at Temerula	1930 to date	1,480	8,670	17	1915-16	60,300	1900-01	340
Santa Ysabel Creek at	1936 to date	310	15,200	ເນ	1915-16	95,200	1960-61	130
Cottonwood Creek at Morena Dam	1911 to date	140	12,400	Ч	1915-16	75,300	1960-61	70

Mean for period 1894-95 through 1946-47, except as noted.

Indicated maxima and minima are recorded or estimated values for period 1894-95 to date except as noted.

Measured runoff, unadjusted for upstream development.

Huasna River, Arroyo Grande 53-year mean computed from Santa Maria Station.

Zero flow reported for eleven seasons.

Average for period 1920-21 through 1949-50.

Indicated maxima and minima are recorded or estimated values for a given period of record.

Averege for period 1922-23 through 1955-56. Averege for period 1936-37 through 1955-56. Averege for period 1930-31 through 1940-41 and 1947-48 through 1957-58.

1955-56. This was approximately 8,000,000 acre-feet less than the previous year, a portion of which can be accounted for by the retention of water behind Glen Canyon Dam in Lake Powell which started filling in January 1963 and, as of October 1, 1963, contained 2,535,000 acre-feet.

Historical unimpaired runoff and the accumulated deviation from the mean seasonal unimpaired seasonal runoff for four selected streams for the period 1894 to the present are delineated on Plate 10, "Representative Runoff Characteristics in Southern California".

Because most runoff of water from the forested watersheds in Southern California is trapped behind dams for later release to spreading grounds, the discharge to the ocean is held at a minimum and is composed primarily of runoff from urban areas on the coastal plains. Runoff from these areas is not economically susceptible to interception. Waste from industries is also discharged to the Pacific Ocean.

Table 10 presents data for the 1962-63 season on discharge from the larger streams which drain a major portion of coastal Southern California. For comparison, flow data for the preceding year are also included in the table. This discharge is in general directly responsive to precipitation. The discharge during the 1962-63 season was no exception to the general trend since 1945 and is a further manifestation of the below-normal precipitation.

Storage in Surface Reservoirs

The amount of water in storage in selected reservoirs as of October 1, 1963, in or supplying water to Southern California is presented in Table 11. So that a comparison can be made, the storage as of October 1 of the previous year is also presented.

-44-

ESTIMATED SEASONAL DISCHARGE TO THE PACIFIC OCEAN AND TIDAL ESTUARIES FROM SELECTED STREAMS IN SOUTHERN CALIFORNIA DURING 1961-62 AND 1962-63

		In acre-feet		
Drainage province and stream	:	1961-62	:	1962-63
Central Coastal				
Santa Maria River Santa Ynez River		24,280 70,990		0 5,090
Ios Angeles				
Ventura River Santa Clara River Ballona Creek Dominguez Channel Los Angeles River Los Cerritos Channel San Gabriel River*		59,100 224,580 50,120 32,220 177,500 7,490 45,600		2,600 6,210 21,480 18,980 54,690 4,610 13,130
Santa Ana				
Santa Ana River Santa Ana Delhi Drain		4,040 No record		1,230 No record
San Diego				
Peters Canyon Drain Aliso Creek Trabuco Creek San Juan Creek Santa Margarita River San Luis Rey River		1,910 180 910 6,000 0 0		1,010 60 60 400 0
TOTALS		704,920		129,550

In acre-feet

*Includes discharge from Coyote Creek.

In coastal Southern California the amount of local water stored in surface reservoirs with individual capacities of 10,000 acre-feet or more amounted to approximately 280,000 acre-feet as of October 1, 1963,

WATER IN STORAGE IN SELECTED SURFACE RESERVOIRS IN OR SUPPLYING WATER TO SOUTHERN CALLFORNIA ON OCTOBER 1, 1962 AND OCTOBER 1, 1963

Drainage province and stream	Reservoir	Capacity, in acre-feet	: Water in storage, : in acre-feet : October 1, :October : 1962 : 1963	, l	Water in storage, in percent of capacity October 1, :October 1 1962 : 1963	: Water in storage, in : percent of capacity : October 1, :October 1, : 1962 : 1963
Central Coastal						
Old Creek Santa Ynez River	Whale Rock Gibraltar Cachuma	40,000 14,780 205,800	7,157 9,915 190,387	11,690 8,826 171,736	17.9 67.1 92.5	29.2 59.7 83.4
Los Angeles						
Coyote Creek Piru Creek Bouquet Creek	Casitas Lake Piru Bouquet Canyon ^a	248,000 100,000 36,510	49,401 25,690 25,665	48,496 12,648 27,514	19.4 25.7 70.3	19.6 12.6 75.4
Lehonten						
Rush Creek Owens River	Grant Lake ^a Long Valley ^a	47,530 183,470	22,064 117,366	46,544 170,595	4.04 4.04	97.9 93.0
Rose Valley	(Leke Crowley) Haiwee (South) ^a	58,530	34,924	33,675	59.7	57.5
Colorado River Basin						
Colorado River	Lake Mead Lake Mojave Lake Havasu	27,207,000 1,810,000 619,000	23,624,000 1,349,000 566,700	17,371,000 1,406,400 540,900	86.8 74.5 91.6	63.8 77.7 87.4

-46-

A		
SELECTED SURFACE RESERVOIRS	SOUTHERN CALIFORNIA	8 1, 1962 AND OCTOBER 1, 1963
IN SELECT	WATER TO	1, 1962 A
WATER IN STORAGE	OR SUPPLYING WATER TO SOUTHERN CH	ON OCTOBER

г,	
OCTOBER	ц)
AND	continued
1962	(cont
Ļ,	
H	

Drainage province : and stream :	Reservoir	Capacity, in acre-feet	: Water in storage, : Water in storage, in : in acre-feet : percent of capacity :October 1, :October 1, :October 1, :October 1,	torage, : feet : ctober 1, :C	Water in a percent of betober 1,	Water in storage, in percent of capacity ottober 1, :October 1,
•••			<u>1962 :</u>	1963 :	1962	: 1963
Senta Ana						
Bear Creek San Iscinto Biver	Bear Valley Taka Hamat	72,170	7,100 6h7	2,810 518	9.6 8.4	6.0 0
	Railroad Canyon	14,700	515	1,910	5 5	13.0
Cajalco Creek	Lake Mathews	182,000	103,022	170, 779	56.6	93.8
Santiago Creek	Santiago	25,000	3,790	2,870	15.2	11.5
San Diego						
Temecula Creek	Vail	49.500	1.646	1.585	5.5	5.6
San Luis Rey River	Lake Henshaw	194,320	5,896	4,990	0.0	5.0
Santa Ysabel Creek	Sutherland	29,680	3,238	2,948	10.9	9.6
San Dieguito River	Lake Hodges	33,550	3,918 ⁰	3,032	11.7	9.0
San Vicente Creek	San Vicente Lake	90,230	50,068 ⁰	57,856	55.5	64.1
Boulder Creek	Cuyamaca	11,600	0	0.2	0	;
San Diego River	El Capitan Lake	112,810	9,752	8,336	8.6	7.4
Sweetwater River	Lake Loveland	25,250	1,589	1,417	6.3	5.6
	Sweetwater (Main)	27,150	2,567	2,502	9.5	9.2

Component of the aqueduct system of the City of Los Angeles. . ຜ

5.6 5.6

1.0 0.9 0.9

342 1,246 3,185

1,495 3,734^c 526

50,210 44,750 56,520

Lower Otay Lake Barrett Lake Morena Lake

Cottonwood Creek Otay River Includes Colorado River water imported via Colorado River Aqueduct.

Includes Colorado River water imported via Colorado River Aqueduct and San Diego Aqueduct.

-47-

or 23 percent of total capacity. This is approximately 35,000 acre-feet less than that in storage on October 1, 1962. Reservoirs storing either imported water or a mixture of imported and local waters, including the Owens Aqueduct system, contained 518,500 acre-feet of water, or 70 percent of capacity, on October 1, 1963, compared to 370,000 in storage on October 1, 1962. This increase is due both to the enlargement of Lake Mathews where an increase in storage of approximately 80,000 acre-feet was indicated and an increase in the amount of storage of 53,000 acrefeet in Lake Crowley on the Owens River.

In San Diego County, the total water in storage as of October 1, 1963, amounted to 87,400 acre-feet, or 12 percent of total storage capacity. This was an increase of only 3,000 acre-feet of water despite an importation and storage of 228,800 acre-feet of Colorado River water during the 1962-63 water year.

Those reservoirs in the Owens Valley belonging to the City of Los Angeles Department of Water and Power contained a total of 251,000 acrefeet of water on October 1, 1963, or 87 percent of capacity. This compares to 174,000 acre-feet in storage on October 1 of the previous year.

Waters stored in the major reservoirs of the lower Colorado River, including Lake Powell, amounted to 21,853,000 acre-feet as of October 1, 1963. This was 14 percent less than the amount of water stored in these reservoirs on October 1, 1962.

Water Imported to Coastal Southern California

Water imported to Southern California by both the City of Los Angeles Department of Water and Power and The Metropolitan Water District of Southern California during the 1962-63 season totaled

-48-

1,365 764 acre-feet. which represents an increase of 20 868 acre-feet over that imported during the previous year. Plate 11, "Historical Importations of Water to Coastal Southern California", graphically presents these importations.

Deliveries of water through the Colorado River Aqueduct as measured at the Hayfield Pumping Plant, which is located approximately 125 miles west of the intake at Lake Havasu, were 1,054,222 acre-feet for the 1962-63 water year, an increase of 4 percent from the 1961-62 season. Deliveries of water to member agencies of The Metropolitan Water District of Southern California totaled 964,540 acre-feet during the water year, a decrease of about 3 percent over the previous year. Data for the 1961-62 and 1962-63 water year deliveries of Colorado River water to each of the coastal counties are presented in Table 12. The difference in the values for the volume of water measured at the Hayfield Pumping Plant and the sum

TABLE 12

COLORADO RIVER	WATER	IMPORTED	TO CO	DUNTIES
IN COASTA	L SOUTI	ERN CALI	FORNL	f
DURING 1961-	62 AND	1962-63	WATER	YEAR

County	: Seasonal : in acre	L import, e-feet	Percent change
county	1961-62	1962-63	
Los Angeles	464,100	379,684	-18
San Diego	187,630	228,839	+22
Orange	291,020	294,687	+ 1
Riverside	41,140	52,602	+28
San Bernardino	6,520	8,728	+ <u>34</u>
TOTALS	990,410	964,540	- 3

of the deliveries to the various counties shown in Table 12 is accounted for primarily by change of storage in Lake Mathews. Distribution system losses are also contributing factors.

The Department of Water and Power of the City of Los Angeles imported a total of 311,542 acre-feet of water through its aqueduct system from Owens Valley. The aqueduct was operated at full capacity during the 1962-63 water year except for short periods of shutdown for maintenance.

Net diversions of water from the Colorado River by principal water agencies in California during the 1963 calendar year amounted to 5,058,646 acre-feet. This is a decrease of 2,834 acre-feet from the volume diverted during the 1962 year. Table 13 presents quantities of water diverted from the Colorado River for use in California by each principal

TABLE 13

Agency		version, cre-feet	: : Percent
Agency	1962	1963	: change
The Metropolitan Water District of Southern California	1,063,060	1,046,190	- 2
Palo Verde Irrigation District	381,180	367,026	- 4
Imperial Irrigation District	3,006,130	3,062,490	+ 2
Coachella Valley County Water District	564,740	537,640	- 5
Yuma Project (Reservation Division)	46,370	45,300	2
TOTALS	5,061,480	5,058,646	0

QUANTITIES OF WATER DIVERTED FROM THE COLORADO RIVER FOR USE IN CALIFORNIA DURING 1962 AND 1963

agency during the 1962 and the 1963 calendar years. A historical record of net diversions of Colorado River water to California from calendar years 1935 to 1963 is shown graphically on Plate 12, "Net Diversions of Water to California from the Colorado River".

Sewage Discharge to the Pacific Ocean and Tidal Estuaries

Sewage effluent discharged to the Pacific Ocean and tidal estuaries, through 12 outfalls which dispose of essentially all such effluent along the coast, amounted to approximately. 800,000 acre-feet during the 1962-63 fiscal year. This is about 2 percent more than that discharged during the previous year. The amount of effluent discharged through each outfall during the 1962-63 season compared with discharges during the 1961-62 season, is shown on Table 14.

The International Outfall Sewer near Tijuana was abandoned on July 10, 1962, and permanently sealed. The sewage from San Ysidro was diverted to the stabilization pond at San Ysidro on July 10, 1962. The sewage from Tijuana was diverted permanently to sewage disposal projects located entirely in Mexico on March 23, 1962.

Data Collection Activities

The extent of streamflow data collection activities by the Department of Water Resources in Southern California is limited to the construction, operation, and maintenance of stream-gaging stations in the vicinity of the State Water Facilities, located on Piru Creek, Castaic Creek, Elizabeth Lake Canyon Creek, and tributaries to the West Fork of the Mojave River. In addition to measurements collected at these stations, incidental measurements of surface water flow are made by Department of

-51-

1961-62	AND 1	962 - 63			
Station	:		harge, re-feet	:	Percent
	196	1-62	1962-6	3	change
City of Santa Barbara City of Ventura City of Oxnard City of Los Angeles	3	,570 ,400* ,720	6,370 3,070 5,000	*	- 3 -10 + 6
Hyperion Terminal Island County Sanitation Districts of		,630 ,930	317,850 7,820		+ 2 - 1
Los Angeles County County Sanitation Districts of	312	,100	317,200		+ 2
Orange County City of San Diego City of Coronado City of Chula Vista International Outfall Sewer	54 1 3	,260 ,650 ,390* ,440* ,150	87,910 53,850 1,390 3,560	* *	+ 7 - 1 0 + 3
TOTALS	790	,240	8 0 4,026		+ 2

SEWAGE DISCHARGE TO THE PACIFIC OCEAN AND TIDAL ESTUARIES FROM MAJOR DISPOSAL FACILITIES IN SOUTHERN CALIFORNIA DURING 1961-62 AND 1962-63

*Estimated

**No sewage discharged after July 10, 1962. Outfall has been permanently sealed and abandoned.

Water Resources personnel from time to time during investigations or emergency situations.

The majority of surface water flow data collection in Southern California is done by the U. S. Geological Survey or local water agencies. A major part of the activities of the Geological Survey in Southern California in the construction, operation, and maintenance of stream-gaging stations for hydrologic data collection is conducted on a cooperative basis between the State of California and the United States, whereby the State of California provides funds on a matching basis to the Geological Survey. Local agencies in Southern California also obtain streamflow records for operational or hydrologic purposes. Streamflow measurement is published in this series to supplement existing publications of streamflow measurements in Southern California.

CHAPTER V. GROUND WATER SUPPLY CONDITIONS

Ground water levels generally declined in Southern California during the 1962-63 season in continuation of the long-term trend illustrated by the hydrographs on Plates 13A and 13B, "Hydrographs of Ground Water Levels at Selected Wells in Southern California". The decline of water levels in many areas can be attributed to the below-normal precipitation for the season which prevented normal recharge of the ground water supply. Continued overdraft of available ground water supplies was also a factor in many basins.

This chapter deals not only with measurements of ground water levels, but also with the artificial recharge being done in Southern California, and with quality of ground water.

Ground Water Levels

A tabulation of all available ground water level observations for Southern California is given in Appendix C. A brief summary of ground water level changes between the spring of 1962 and the spring of 1963 is presented here for each of the drainage provinces. It should be noted that changes in levels are determined by a simple arithmetic average of available measurements. No attempt has been made to select wells according to the size or importance of the ground water basins involved. Also presented are the observed extremes in depth to ground water and the wells where they occurred.

Central Coastal Drainage Province (T), (Santa Barbara and San Luis Obispo Counties)

Estimated changes in ground water levels for the southern part of the Central Coastal Drainage Province between the spring of 1962 and

-55-

the spring of 1963 are given in Table 15. Ground water levels changed 2 feet or less in 20 out of 24 hydrologic areas tabulated. The changes shown that are greater than 2 feet may not be conclusive due to the small number of wells involved.

Los Angeles Drainage Province (U)

Estimated changes of ground water levels for the Los Angeles Drainage Province between the spring of 1962 and the spring of 1963 are given in Table 16. Ground water levels declined in 29 of the 46 hydrologic areas tabulated, 6 remained substantially the same, and 11 increased. The 15-foot rise in the Piru Subarea (U-03.Dl) can be attributed to the spreading of local water in the area. Water spreading also accounted for the 7-foot rise shown for the Central Subarea (U-05.A5), except that most of the water spread was imported Colorado River water and that control of pumping was also a factor. The 12-foot rise in the Anaheim Subarea (U-05.F1) was also due mostly to the spreading of imported Colorado River water and control of pumping. The Anaheim Subarea is adjacent to the East Coastal Plain Subarea (Y-Ol.Al) in the Santa Ana Drainage Province which also showed a rise for the same reasons. Water levels have stabilized in the West Coast Subarea (U-05.A2), reflecting the water injected through a series of injection wells of a sea-water intrusion barrier project. The water level declines shown in a majority of the hydrologic units reflect the subnormal precipitation received during the 1962-63 season throughout this drainage province.

Lahontan Drainage Province (W), Southern Portion

Estimated changes of ground water levels for the southern portion of the Lahontan Drainage Province are given in Table 17.

-56-

	Location and observed extremes of depth to ground water during 1962-63, in feet Maximum : Minimum :		IM 275/13E-09K01M Flowing			1M 275/ 8E- 6G01M 9.8	IM 275/ 85–26002M 7.2	ZM 285/ 95-23E02M 16.5	3м 295/10Е- 3СО5М 9.8
IONS	: Location and of depth - during 19 Maximum		265/12E-26D01M 278.9			. 2.11, MI019 -31, MI019	275/ 8E-24JOIM 24.9	285/ 9E-23E02M 20.0	285/10E-34N03M 17.2
UND WATER ELEVAT IN CENTRAL COAST DURING 1962-1963	Average change in ground water level during the year, in feet		+			۲ ۱	0	+	+
AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN CENTRAL COASHAL DRAINAGE PROVINCE DURING 1962-1963	Number of wells considered in anelysis		14O			Т	m	Т	г
	Hydrologic unit, subunit, : and subarea	T-09.00 Salinas Unit	T-09.HO Paso Robles Subunit	T-l0.00 San Luis Obispo Unit	T-10.AO Cambria Subunit	T-10.A3 San Simeon Subarea	T-10.A4 Santa Rosa Subarea	T-10.A6 Cayucos Subarea	T-10.AT Old Subarea

-57-

AVERAGE CHANGES IN GROUND WATER ELEVATIO	IN HYDROLOGIC UNITS IN CENTRAL COASTAL	DRAINAGE PROVINCE DURING 1962-1963	(continued)
NI	B	N	Ŭ
AVERAGE CHANGES	IN HYDROLOGIC	DRAINAGE PRO	

SN

		() () () () () () () () () ()	· Tonotion and aha	Control Controlmon
Hydrologic unit, subunit, : and subarea :	Number of wells considered in analysis	Average change in ground water level during the year, in feet	Descrion and observed extremes of depth to ground water during 1962-63, in feet Maximum : Minimum	erved extremes round water 63, in feet Minimum
T-10.BO San Luis Obispo Subunit				
T-10.Bl Morro Subarea	5	↔ +	0°9† MIOd61-EII/S6Z	29s/loe-25bozm 7.5
T-10.B2 Chorro Subarea	Ч	0	295/11E-32J02M 18.5	295/11E-32JO2M 15.0
T-10.B3 Los Osos Subarea	ε	۲ +	30s/112-7K0M ME0.6	305/10E-13G01M 16.8
T-10.B4 San Luis Obispo Creek Subarea	7	۲ +	31s/13E-1901HM 22.5	31S/12E-28NOIM 7.4
T-10.B6 Pismo Subarea	г	ti -	315/13e-lénoim 35.5	315/13E-16NOM 14.5
T-10.CO Arroyo Grande Subunit				
T-10.Cl Arroyo Grande Subarea	16	. 1	32s/13E-32D03M 85.2	12N/35W-30P01S

-58-

	erved extremes round water 63, in feet Minimum	7.015 69.7	30s/19E-29M02M 9.0		10N/36W-12POIS 9.1	9N/32W-23KOIS 15.2	7N/24W-13Q01S 15.0	8W/34W-23B01S 16.3		TN/32W-22Q06S Flowing
ONS	: Location and observed extremes of depth to ground water during 1962-63, in feet : Maximum : Minimum	300.0 34W-18D01S	30s/18E- 201M 39.9		9N/33W-18cols 517.4	9N/32W- 7NOLS 216.5	9N/26W- 4J01S 299.1	8N/32W-35Q01S 155.0		7N/34W-12EOIS 308.6
IN GROUND WATER ELEVATI MITS IN CENTRAL COASTA /INCE DURING 1962-1963 (continued)	: Average : change in : ground water : level during : the year,	6	n 1		CJ +	،	CJ t	T ı		1 -
AVERAGE CHANCES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN CENTRAL COASTAL DRAINAGE PROVINCE DURING 1962-1963 (continued)	Number of wells considered in analysis	Т	14		26	ε	13	L		50
	: Hydrologic unit, subunit, : and subarea	T-10.C2 Nipomo Mesa Subarea	T-11.00 Carrizo Flain Unit	T-12.00 Santa Maria-Cuyama Unit	T-12.AO Santa Maria Subunit	T-12.BO Sisquoc Subunit	T-12.CO Cuyama Valley Subunit	T-13.00 San Antonio Unit	T-14.00 Santa Ynez Unit	T-l4.AO Lompoc Subunit

	erved extremes round water 53, in feet	Mînimum	6N/34w-12A02S 3.9	6.0/31W-17DOLS	6N/30W-24E01S 2.1			4N/28W-17ROIS 7.7	9.45 Stop41-W72/N4	4N/25W-30D01S
	: Location and observed extremes : of depth to ground water : during 1962-63, in feet	: Maximum :	6N/33W- 9D02S 59.3	6N/32W- 2Q01S 59.0	7N/30W-33M02S 194.6			4N/2TM- 69.09S 223.3	411/27W- 8E02S 128.5	4N/25W-26A01S 304.3
(courtined)	: Average : change in : ground water	: level during : the year, : in feet	۲ ،	1	0			Ч т	0	1
COIL-	Number of vells	constant of in analysis	59	19	24:			52	ຒ	17
	Hyàrologic unit, subunit,	and subarea	T-14.BO Santa Rita Subunit	T-14.CO Buellton Subunit	T-l4.DO Santa Ynez Subunit	T-15.00 Santa Barbara Unit	T-15.CO South Coast Subunit	T-15.C1 Goleta Subarea	T-15.C2 Santa Barbara Subarea	T-15.C4 Carpinteria Subarea

-60-

	ryed extremes ound water 3, in feet Minimum		2N/23W- 5P01S 8.4	L.L		4N/23W-14BO2S 10.2			2N/23M-24FOIS 6.5
CNS	<pre>: Location and observed extremes of depth to ground water</pre>		2N/23W- 5IOIS 15.9	411/23%-21C05S 164.4		4N/22M- 5J06S 272.5			2N/22V- 9MOIS 237.1
UND WATER ELEVATI S IN LOS ANGELES DURING 1962-1963	Average change in ground water level during the year, in feet		یں +	0 1		0 1			0
AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN LOS ANGELES DRAINAGE PROVINCE DURING 1962-1963	Mumber of vells considered in enalysis		Q	72		50			6
AVERAGOUN	Hydrologic unit, subunit, : and suberea	U-02.00 Ventura River Unit	U-02.AO Lower Ventura River Subunit	U-02.BO Upper Ventura River Subunit	U-02.CO Ojai Subunit	U-02.C2 Ojai Subarea	U-03.00 Santa Clara-Calleguas Unit	U-03.A0 Oxmard Plain Subunit	U-03.Al Oxmarå Subarea

-61-

		Average	. Location and observed extremes	erved extremes
Hydrologic unit, subunit, and subarea	Number of wells considered in	change in change in ground water level during the year,	Meximum User Pee example of depth to ground weter during 1962-63, in feet Meximum : Minimum	round vuter 63, in feet Minimum
		: in reet	•••	
U-03.A2 Pleasant Valley Subarea	35	۳ +	2N/21W-24FOIS 388.0	2N/21W-35COIS 37.9
V-03.BO Santa Paula Subunit				
U-03.Bl Santa Paula Subarea	56	CJ I	2N/22W- 2KOIS 222.2	2N/22W- 2KO4S 2.3
U-03.CO Sespe Subunit				
U-03.Cl Fillmore Subarea	61	+ 4	4N/20W-31H01S 317.2	3N/20W- 4NO2S 0.7
U-03.DO Piru Subunit				
U-03.Dl Piru Subarea	38	+15	4N/18W-20M01S 192.5	4N/19W-33COLS
U-03.E0 Upper Santa Clara River Subunit				
U-03.El Eastern Subarea	64	- 5	5N/14W-30R01S 284.5	4N/17W-15NOLS Flowing

-62-

	erved extremes round water 53, in feet	Minimum	3N/15W- 1AOLS 17.7		2N/21M-16JOIS 86.8	3N/16W-28NO2S 31.0	ZN/19W-19LOIS 52.6	5.7 5.7	2N/194-14P01S
	: Location and observed extremes of depth to ground water during 1962-63, in feet	: Maximum :	5N/12W-30K01S 255.6		3N/21W-36POIS 334.3	3N/20W-31KO1S 642.4	2N/19W-21C02S 334.3	21/19%-34D01S 349.0	2N/19W-15N02S 258.0
inued)	: Average : change in : ground water	: level during : the year, : in feet	0		. 1	CJ 1	÷	I	2
(continueà)	Number of wells	constaerea in analysis	Ч		ω	33	4	34	8
	: Hydrologic unit, subunit, :	and subarea	U-03.E5 Acton Subarea	U-03.FO Calleguas-Conejo Subunit	U-03.Fl West Las Posas Subarea	U-03.F2 East Las Posas Subarea	U-03.F3 Arroyo Santa Rosa Subarea	U-O3.F4 Conejo Valley Subarea	U-03.F5 Tierra Rejada Valley Subarea

-6

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN LOS ANGELES DRAINAGE PROVINCE DURING 1962-1963 (continued)

-63-

	Location and observed extremes of depth to ground water during 1962-63, in feet Maximum : Minimum	3N/18M-24HO4S 3N/18M-24E01S 136.1	2N/17W-16M02S 2N/17W- 9M02S 478.8 7.0	1N/194- 9G01S 1N/194-15E02S 449.5 0.4			15/164-329025 15/164-293015 15.1 9.6		stold -wTl/nt slold-wBl/nt 5.811 0.91
10.00	: Locati of : du : Au	31/NE	LT/NS	5T/NT			r 91/St		GL BL/NL
s IN LOS ANGELER DURING 1962-1963 ued)	Average change in ground water level during the year, in feet	6	0	6			0 1		9
IN HYDROLOGIC UNITS IN LOS ANGELES DRAINAGE PROVINCE DURING 1962-1963 (continued)	Number of wells wells considered in analysis	Q	49	31			ε		м
DF	Hydrologic unit, subunit, : and subarea	U-03.F6 Gillibrand Subarea	U-03.F7 Simi Valley Subarea	U-03.F8 Thousand Oaks Subarea	U-O4.00 Malibu Unit	U-O4.AO Topanga Subunit	U-O4.Al Topanga Canyon Subarea	U-O4.BO Malibu Creek Subunit	U-O4.B2 Ias Virgenes Canyon Subarea

AVERAGE CHANGES IN GROUND WATER ELEVATIONS

-64-

	rrved extremes ound water 3, in feet Minimum	23.9 23.9	stom+2-ngl/nt 38.9	5.2 5.2	2S/18W- 5C03S 6.2	1S/19W-30P01S 4.3	1S/20W-25E01S 13.2
SNC	: Location and observed extremes of depth to ground water during 1962-63, in feet Maximum : Minimum	102.5 102.5	244015 39.8	1N/20W-25C01S 323.1	25/18w-05E01S 55.4	15/19%-30P015 5.1	15/20M-25E01S 23.0
AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN LOS ANGELES DRAINAGE PROVINCE DURING 1962-1963 (continued)	 Average change in ground water level during the year, in feet 	CJ 1	1	-	ი ი	0	- 1
CHANGES IN GROUND W HYDROLOGIC UNITS IN INAGE PROVINCE DURI (continued)	Number of wells considered in analysis	t1	Ч	JO	9	ч	ч
AVERAGE IN DRV	: Hydrologic unit, subunit : and subarea :	U-Ol.B3 Lindero Canyon Subarea	U-O4.B5 Russell Valley Subarea	U-Oh.B6 Sherwood Subarea	U-O4.CO Point Dume Subunit U-O4.C5 Ramera Canyon Subarea	U-O4.DO Camarillo Subunit U-O4.D3 Nicholas Canyon Subarea	U-O4.D4 Arroyo Sequit Subarea

-65-

ELEVATIONS	ANGELES	962-1963	
GROUND WATER	HYDROLOGIC UNITS IN LOS ANGELES	DRAINAGE PROVINCE DURING 1962-1963	(continued)
AVERAGE CHANGES IN GROUND WATER ELEVATION	IN HYDROLOGIC	DRAINAGE PROV.	(c

Hvdrolo <i>w</i> ic unit. subunit.	: Number of vells	: Average : change in : ground wate		: Location and observed extremes : of depth to ground water during 1962-63, in feet
and subarea	considered in analysis	: level during : the year, : in feet	r, t	Maximum : Minimum :
U-05.00 Los Angeles-San Gabriel River Unit				
11-05.40 Coastal Plain of				

	300 0 45/13W-15B04S 55/13W- 6B02S 109.8 0.9	42 - 2 25/15W-26B01S 25/15W-27L01S 152.3 0.3	3 + 2 IS/14W-17E03S IS/14W-18A0IS 332.0 Flowing	4.7 2S/13W-27B07S 5S/12W-11D01S 464.5 1.1		153 - 5 2N/15M-151028 2N/16M-27P028
Ios Angeles County Subunit	U-05.A2 West Coast Subarea	U-05.A3 Santa Monica Subarea	U-05.A4 Hollywood Subarea	U-05.A5 Central Subarea	U-05.BO San Fernando Subunit	U-05.Bl San Fernando Subarea
	U-05.A2	U-05.A3	U-05.A4	U-05.A5	U-05.BO St	U-05.B1

-66-

Average: Location and observed extremeschange inof depth to ground waterground water: during 1962-63, in feetlevel during: Maximumthe year: Maximum	- 5 3N/15W-26GOLS 3N/15W-36COLS	- ⁴ ZN/13W-18NOLS ZN/14W-14BOLS 374.3 5.7	+ 2 2N/13W-27901S 1N/13W-10201S 26.9 24.9		- 3 IN/IIW- TNOIS - 357.0 0.3	- 7 IN/12W- BDOLS ZN/12W-33QOLS 318.0 31.2	+ 1 IN/JIW-ZICOIS IN/IOW-Z3EOIS 246.1 9.8		- 3 IN/9W-29LOIS IS/19W-32G02S
Number of Nells vells considered in analysis	ΓŢ	24	6		61	20	15		309
: Hydrologic unit, subunit, and subarea	U-05.B2 Sylmar Subarea	U-05.B3 Tujunga Subarea	U-05.B4 Verdugo Subarea	U-05.CO Raymond Subunit	U-05.Cl Pasadena Subarea	U-05.C2 Monk Hill Subarea	U-05.C3 Santa Anita Subarea	U-05.DO San Gabriel Valley Subunit	U-O5.Dl Main San Gabriel Subarea

-67-

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN LOS ANGELES DRAINAGE PROVINCE DURING 1962-1963 (continued)

AVERAGE CHANGES IN GROUND WATER ELEVATIONS	IN HYDROLOGIC UNITS IN LOS ANGELES	DRAINAGE PROVINCE DURING 1962-1963	(continued)	
AVERA (Ħ	D		

	(cont	(continued)		
Hydrologic unit, subunit, : and subares	Number of wells considered in snalysis	Average change in ground water level during the year in feet	<pre>: Location and observed extremes of depth to ground weter during 1962-63, in feet Maximum Maximum </pre>	ved extremes und weter , in feet Minimum
U-05.D2 Lower Canyon Subarea	5	ю -	IN/IOW-29JOLS 123.8	IN/IOW-26ROIS 25.4
U-05.D4 Foothill Subares	2	I S	1N/94-36E02S 11 158.1	1N/ 9W-35HOLS 33.9
U-05.E0 Spadra Subunit				
U-05.El Spadra Subarea	6	I IV	1S/ 94-25B01S 269.5	ls/ 9w-22JOIS Flowing
U-05.E2 Pomona Suberea	6	0 1	1S/ 84- 7G02S 476.1	1S/ 94-11ROIS 73.4
U-05.E3 Live Oak Suberea	18	01 1	1N/ 8M-33Q035	NV 84-33AOIS 22.6
U-05.FO Anaheim Subunit				
U-05.Fl Anaheim Subarea	74	+12	3s/low-27Nols 133.5	310145-W6 /SE
U-05.F2 La Habra Subarea	7	+	3s/10w- 7001s 159.0	35/10W- 2401S 19.8
U-05.F3 Yorba Linda Subarea	2	0	3s/ 94-23KOIS	35/ 94-34COLS

-68-

	rved extremes ound water 3, in feet Minimum			91/134- 79.35 49.6	8N/16W-26GOLS 2.8	8N/JIW-18LOIS 7.1	5N/12W- ZKO2S 6.3	5N/11W-13JOLS Flowing		8N/ 4W-3IROIS 17.9
SNC	: Incertion and observed extremes of depth to ground water during 1962-63, in feet : Maximum : Minimum : :			0.042 340.0	8N/16W- 8G01S 303.5	6N/12W- BROIS 373.0	6N/10W-20P01S 240.9	5N/ 9W-27AOLS 330.4		4N/ 5W-22HOIS 674.2
AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN LAHONTAN DRAINAGE PROVINCE DURING 1962-1963	: Average : change in ground water : level during the year, in feet			0	۳ ۱	i V	CJ I	CI I		۲ ۱
HE CHANGES IN GRO IN HYDROLOGIC UN VAINAGE PROVINCE	Number of wells considered in analysis			Ч	ττ	20	m	JΤ		7
AVERAC	Hydrologic unit, subunit, and subarea	W-26.00 Antelope Unit	W-26.AO Antelope Subunit	W-26.A3 Willow Springs Subarea	W-26.A4 Neenach Subarea	W-26.A5 Lencaster Subarea	W-26.A7 Buttes Subarea	W-26.A8 Rock Creek Subarea	tidi coto Motorit	W-20.00 Mujave July W-28.B0 Upper Mojave Subunit

-69-

WATER ELEVATIONS	IN LAHONTAN	DVG 1962-1963	1)
AVERAGE CHANGES IN GROUND WATER ELEVATIONS	IN HYDROLOGIC UNITS IN LAHONTAN	DRAINAGE PROVINCE DURING 1962-1963	(continued)

erved extremes round water 63, in feet Minimum	8N/ 4W-21FO2S 10.3	9N/ 2E- 3G02S 8.0
<pre>Idention and observed extremes of depth to ground water during 1962-63, in feet Maximum : Minimum </pre>	8N/ IW-32F01S 151.9	lon/ 3E-21A01S
Average change in ground water level during the year, in feet	1	n 1
Number of wells considered in analysis	N	74
Hyàrologic unit, subunit, and subarea	W-28.CO Miàdle Mojave Subunit	W-28.EO Lower Mojave Subunit
Hyàrol	W-28.co	W-28.E0

-70-

None of this area has drainage outlets to the ocean, and it has many closed basins, some of which are small. The only source of ground water recharge is precipitation, which is quite low over much of the region. Waterbearing sediments which have major significance are located in the Owens (W-03.00), Antelope (W-26.00), and Mojave (W-28.00) Hydrologic Units. The Owens Unit (W-03.00) sediments receives most of its recharge from runoff from snowmelt in high mountainous area.

Colorado River Basin Drainage Province (X)

Changes of ground water levels for the Colorado River Basin Drainage Province between the spring of 1962 and the spring of 1963 are given in Table 18. Because there is a lack of data for considerable parts of this drainage province, the changes presented may not reflect general conditions. Most of the area drains to the closed Salton Sea Basin. Ground water in this drainage province is of less significance from a water supply standpoint than is imported water from the Colorado River Aqueduct.

Santa Ana Drainage Province (Y)

Changes of ground water levels for the Santa Ana Drainage Province between the spring of 1962 and the spring 1963 are given in Table 19. Ground water levels generally fell, due to a deficiency in precipitation and continued overdraft. In the East Coastal Plain Subarea (Y-O1.A1), an average rise of 7 feet was due principally to artificial recharge operations, using mostly imported Colorado River water, and to controlling of pumping. This subarea is adjacent to the Anaheim Subarea (Y-O1.A1) in the Los Angeles Drainage Province which also showed a rise

-71-

	DRA INAGI	PROVINCE	DRAINAGE PROVINCE DURING 1962-1963		
Hydrologic unit, subunit, and subarea		Number of wells considered in analysis	Average change in ground water level during the year,	: Location and observed extremes of depth to ground water during 1962-63, in feet Maximum : Minimum	erved extremes round water 53, in feet Minimum
X-01.00 Lucerne Unit		Q	- 2 -	4N/ ZW-24KOIS 309.5	4.0 IW-14BOIS
X-08.00 Joshua Tree Unit					
X-08.A0 Warren Subunit		Q	CJ 1	1N/ 6E-31P01S 298.7	139.5 139.5
X-08.B0 Copper Mountain Subunit		7	۲ •	ли/ бе- 44015 11/ бе- 440	2s/ 8E-21G02S 32.9
X-09.00 Dale Unit					
X-09.A0 Twentynine Palms Subunit		6	۲ ۱	369.1 369.1	AL 9E-33JOLS
X-09.BO Dale Subunit		m	L I	11/10E-36P01S 333.6	ln/lze-20dols 27.8

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN COLORADO RIVER BASIN

-72-

	erved extremes round water 53, in feet Minimum		1S/ 5E- 4RO2S 66.2		3s/ 1W-12COIS 308.2	2S/ 1E- 3XOlS Flowing		3S/ 5E-17K01S 29.0	45/ 6E-12KOIS 0.4	45/ 6E-14COIS 8.1	6S/ 8E- 5ROLS Flowing
LONS AS IN	: Location and observed extremes of depth to ground water during 1962-63, in feet : Maximum : Minimum		1S/ 4E-15NOIS 201.0		3s/ 1W-12A01S 318.5	3s/ 1W- INOLS 335.4		2S/ 4E-27R01S 431.9	3s/ 6E-28A01S 248.1	45/ 6E- 8LOIS 260.8	35/ 4E-30COLS 550.1
AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN COLORADO RIVER BASIN DRAINAGE PROVINCE DURING 1962-1963 (continued)	: Average : change in : ground water : level during the year, : in feet		CJ 1		۲ ۱	0		0 1	9 1	01 +	- 1
CHANGES IN GRO OLOGIC UNITS II INAGE PROVINCE (cont.	Number of wells considered in analysis		г		Т	ŝ		4	ч	m	23
AVERAGE IN HYDR DRA.	Hydrologic unit, subunit, : and subarea	X-19.00 Whitewater Unit	X-19.AO Morongo Subunit	X-19.CO San Gorgonio Subunit	X-19.Cl Beaumont Subarea	X-19.C2 San Gorgonio Subarea	X-19.DO Coachella Subunit	X-19.D2 Mission Creek Subarea	X-19.D4 Sky Valley Subarea	X-19.D6 Thousand Palms Subarea	X-19.D7 Indio Subarea

-73-

TABLE 19

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN SANTA ANA DRAINAGE PROVINCE DURING 1962-1963

Location and observed extremes	of depth to ground water	during 1962-63, in feet		Maximum : Minimum :
	••	•••	•••	
Average	change in	ground water	level during	the year, in feet
	••	••	••	•••••
Minmhow of		vonet deved	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	analysis
	•••	••	••	•••••
		ydrologic unit, subunit,		

Y-Ol.00 Santa Ana River Unit

Lower Santa Ana	River Subunit
V-OL.AO	

5s/ 9w-27F01S 1.8	2.0 SETONTE-W8 /SE		3s/ 7w-20E02S 1.1	230125-W5 36.4	1S/ 7W- 4E02S 185.8
4s/ gw-22R01s 312.2	45/ 8W- 6DOIS 43.3		stong -m7 /st 579.4	15/ 8w-20B025 529.0	ln/ Tw-29ro3s 474.7
L +	- T		n I	6 1	+13
150	50		153	30	14
Y-Ol.Al East Coastal Plain Subarea	Y-Ol.A3 Santa Ana Narrows Subarea	Y-Ol.BO Middle Santa Ana River Subunit	Y-OL.Bl Chino Subarea	Y-Ol.B3 Claremont Heights Subarea	Y-Ol.B4 Cucamonga Subarea
LA. LO-Y	Y-01.A3	Y-01.BO M	Y-OL.Bl	Y-01.B3	Y-O1.B4

-74-

	Number of	: Average : change in	: Location and observed extremes : of depth to ground water	erved extremes round water
Hydrologic unit, subunit, : and subarea :	considered in analysis	: ground water level during the year, in feet	: during 1902-03, in leev : Maximum : Minimum : : :	03, IN LEEU Minimum
Y-01.B5 Temescal Subarea	53	٦ ۱	3s/ 7w-35cols 197.0	3s/ 7w-20Pols 0.7
Y-O1.B6 Arlington Subarea	21	0	3S/ 5W-17Q01S 75.3	3s/ 6W-24qois 5.5
Y-Ol.B7 Riverside Subarea	50	- 14	11/ 5W-36R01S 322.0	2S/ 5W-29E02S 6.0
Y-O1.CO Lake Mathews Subunit				
Y-Ol.Cl Colàwater Subarea	9	-24	55/ 6W- 39015 245.7	5S/ 6W- 2POIS 122.4
Y-Ol.C2 Bedford Subarea	Ŋ	1	4s/ 6W-35G02S 55.4	45/ 6W-35G02S 36.1
Y-Ol.C4 Lee Lake Subarea	£	L -	55/ 5W- 8POLS 90.8	5s/ 5W- 7COIS 14.8
Y-01.05 Terra Cotta Subarea	4	+ N	5S/ 4W-31ROLS 40.6	5s/ 5w-36J01S 12.2
Y-01.D0 Colton-Rialto Subunit				
Y-01.D2 Lower Lytle Subarea	ŝ	00 +	1N/ 5W-22CO2S 347.1	T1.9 FR- GFOLS

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN SANTA ANA DRAINAGE PROVINCE DURING 1962-1963 (continued)

1

	erved extremes round water 63, in feet	UNTER THE TAK	53.2 53.2	1s/ 4%-21K035 36.2	2S/3W-20DOLS 54.1		0.2 0.2	15/ 34-33DOLS 156.6	1S/ 2W-21D01S 69.0	1S/ 3W-35G05S 130.2
1	 Iocation and observed extremes of depth to ground water during 1962-63, in feet Maximum 		11/5W-17K01S 61.4	2040-294015 2040-294015	2S/ 4W-12P02S 65.4		11N/ 3W-28P01S 448.1	1s/ 3W-33D01s 359.9	ls/ 2W-l&ROlS 246.1	15/ 24-29N015 358.7
IN HYDROLOGIC UNITS IN SAVTA ANA DRAINAGE PROVINCE DURING 1962-1963 (continued)	: Average : change in : ground water : level during	. une year, : în feet	+15	۰ ۱	11-		- 15	-14	CJ 8	CV +
IN HYDROLOGIC UNITS IN SAVEA ANA RAINAGE PROVINCE DURING 1962-196 (continued)	Number of Wells considered in	analysis	ч	20	Ч		189	7	Ŋ	9
DRA	Hydrologic unit, subunit, subunit, subunit, subores .		Y-01.D3 Upper Colton-Rialto Subarca	Y-01.D4 Colton-Rialto Subarea	Y-01.D5 Reche Subarca	Y-Ol.EO Upper Santa Ana Subunit	Y-01.E2 Bunker Hill Subarea	Y-Ol.E3 Redlends Subarea	Y-Ol.E4 Mentone Subarea	Y-Ol.E5 Reservoir Subarea

AVERAGE CHANGES IN GROUND WATER ELEVATIONS

-76-

(continued)	Number of : Average : Location and observed extremes Number of : change in : of depth to ground water wells : wells : ground water : during 1962-63, in feet	end subarea : consucted : level during : : : Maximum : Minimum : Minimum : Minimum : : in feet : : : : : : : : : : : : : : : : : :	Y-01.E7 Santa Ana Canyon Subarea 2 -21 1S/ 2W- 8COIS 1S/ 2W- 8CO2S 71.2 68.8	Y-01.E8 Mill Creck Subarea 5 - 2 15/2W- 9201S 15/1W- 8G01S 173.3 13.0	9 Sycamore Subarea 12 - 5 1N/ 5W-15QO2S 1N/ 5W-23AO1S 426.4 115.0	Y-Ol.FO San Timoteo Subunit	Y-01.Fl Yucaipa Subarea 1 - 3 2S/ 2W- 3E01S 2S/ 3W- 3NOLS 22. 2014.5 72.3	Y-OL.F2 San Timoteo Subarea 10 - 3 2S/ 1M-34MOIS 2S/ 2W-20KOIS 35.4	9 Nobie Creek Subarea 7 - 4 2S/ IW- 2KO2S 2S/ IW- 2JOIS 15.4		Y-02.00 San Jacinto Valley Unit.
	Hydrologic unit,	end subar	Y-Ol.E7 Santa Av Subar	Y-OL.E8 Mill Cr	Y-01.E9 Sycamor	Y-01.FO San Timot	Y-Ol.Fl Yucaipa	Y-Ol.F2 San Tim	Y-Ol.F9 Nobie C		Y-02.00 San Jacinto

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN SANTA ANA DRAINAGE PROVINCE DURING 1962-1963 (continued)

-77-

Y-02.AO Perris Subunit

	Location and observed extremes of depth to ground water during 1962-63, in feet	: Minimum :	.s 5s/ 3w-13N01s	5.65/ 3W-14MOIS	s 55/ 3W-25K01S 36.3	.s 45/ 2W-19J01S 22.2	15 55/ 24-129015 64.2	s 3s/ 2w-2lcols 9.2	s 6s/ 4w-28lols 10.3
~	: Location and : of depth t : during 19	: : Maximum :	2S/ 4w-35A01S 358.3	5s/ 3W-29B01S 174.7	5s/ 2W-35cols 99.4	45/ 24- 3POIS 121.0	55/ JE-20G035 307.5	3S/ 1W-03K02S 386.8	68/ 5W- 31.02S 293.2
IC UNITS IN SANTA ANA VINCE DURING 1962-1963 (continued)	: Average : change in : ground water	: level during : the year, : in feet	o	9 1	m 1	() +	г ,	- 1	CJ 1
IN HYDROLOGIC UNTTS IN SAWTA ANA DRAINAGE PROVINCE DURING 1962-1963 (continued)	Number of wells considered	in analysis	vo	N	б	Q	4	17	45
	Hydrologic unit, subunit,	and subarea	Y-02.Al Ferris Valley Subarea	Y-O2.A2 Menifee Subarea	Y-02.A3 Winchester Subarea	Y-02.A4 Lakeview Subarea	Y-02.A5 Hemet Subarea Y-02.B0 San Jacinto Subunit	Y-02.Bl San Jacinto Subarea Y-02.CO Elsinore Subunit	Y-02.Cl Elsinore Subarea

AVERAGE CHANGES IN GROUND WATER ELEVATIONS

-78-

for the same reasons. Other rises shown may not reflect actual conditions due to rapidly fluctuating water levels and timing of measurements.

San Diego Drainage Province (Z)

Changes of ground water levels for the San Diego Drainage Province between the spring of 1962 and the spring of 1963 are given in Table 20. Ground water levels generally fell. Areas showing rises may not reflect actual conditions due to rapidly fluctuating water levels and timing of measurements. Deposits of water-bearing sediments in this drainage province are relatively small in capacity. Some have been observed to have been pumped dry in a single season. During this season, as in previous seasons, the San Diego Drainage Province has been drier than most of the rest of Southern California, with the result that its meager ground water basins have suffered relatively more, and increased reliance is put on imported Colorado River water.

Artificial Recharge

The replenishment of ground water basins by artificial recharge as a means of conserving surface runoff and regulating imported water is widely practiced in Southern California. Approximately 362,000 acre-feet of local and imported water were reported as being spread or injected at 40 ground water recharge projects during the 1962-63 water year. Of these, about 280,000 acre-feet, or 77 percent, consisted of imported Colorado River water. Total water spread was approximately 71 percent of the total amount spread during the 1961-62 water year. Essentially all the imported supply was spread in two areas: Montebello Forebay, which is located in the Central Subarea of the Los Angeles-San Gabriel River Unit and the

-79-

3	
TABLE	

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN SAN DIEGO DRAINAGE PROVINCE DURING 1962-1963

Location and observed extremes of depth to ground water during 1962-63, in feet	: : Minimum :			ous 6s/ 8w-23ROIS 9.0	01S 8s/ 8w-13D01S 9.2			015 65/ 4w-26M015 40.3	05s 8s/ 3w-13K01S 14.4	
'	: Maximum :			65/ 84-26F045 74.0	8s/ 8w-11H01S 62.6			65/ 44-27MOIS 145.8	7S/ 3W-17P05S 55.2	
: Average : change in : ground water	: level during : the year, : in feet			m +	I I			+ T	CJ I	
Number of vells considered	in analysis			12	61			9	ſ	
Hyàrologic unit, subunit, :	end suberee	Z-Ol.00 Sen Juan Unit	Z-Ol.AO Laguna Subunit	Z-Ol.A3 Aliso Suberea	Z-Ol.BO San Juan Subunit	Z-02.00 Santa Margarita Unit	Z-02.CO Murriets Subunit	Z-02.Cl Wildomar Subarea	Z-02.C2 Murrieta Subarea	Z-03.00 Sen Luis Rey Unit

-80-

Z-03.A0 Bonsall Subunit

	(cont	(continuea)		
: Hydrologic unit, subunit, :	Number of wells considered	: Average : change in : ground water	: Location and observed extremes of depth to ground water during 1962-63, in feet	erved extremes round water 63, in feet
and subarea	in analysis	: the year, the year, in feet	. Maximum :	Minimum
Z-03.Al Mission Subarea	IO	CJ I	SIOE -W4 /SII	20.1 20.1
Z-03.A2 Bonsall Subarea	13	CJ I	10S/ 3W-15E01S 45.0	10S/ 3M-20B01S 10.9
Z=03.CO Warner Subunit				
Z-03.Cl Warner Subarea	24	რ +	105/ 32-33F015 207.7	10S/ 2E-25E01S 28.5
Z-05.00 San Dieguito Unit				
Z-05.A0 San Dieguito Subunit				
Z-05.Al San Dieguito Subarea	38	- 4	135/ 38-28NO25 90.0	145/ 3W- 70025 0.6
Z-05.B0 Hodges Subunit				
Z-05.Bl Hodges Subarea	ЪŢ	- 1	13s/ 2%- 3KOls 104.0	13s/ 2W- 2D03S 5.5
Z-05.B2 Green Subarea	L	N 1	135/ IW-31KOIS 38.7	13S/ iw-31K01S 37.8

AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN SAN DIEGO DRAINAGE PROVINCE DURING 1962-1963 (continued)

AVEKA	GE CHANGES IN GE IN HYDROLOGIC UN RAINAGE PROVINCE (cont	AVERAGE CHANGES IN GROUND WAIER ELEVATIONS IN HYDROLOGIC UNITS IN SAN DIEGO DRAINAGE PROVINCE DURING 1962-1963 (continued)	TONS	
Hydrologic unit, subunit, and subarea	Number of wells considered	: Average : change in : ground water : level during	<pre>: Location and observed extremes : of depth to ground water : during 1962-63, in feet : :</pre>	served extremes ground water -63, in feet
	analysis	: the year, : in feet	: Maximum	Minimum
Z-05.B3 Felicita Subarea	٢	0	12S/ 2W-28POLS 107.8	12S/ 2W-34BOIS 15.5
Z-05.B4 Bear Subarea	6	Ч Т Т	12S/ 2W-24M03S 62.0	12S/ 2W-24ROIS 0.2
Z-05.CO San Pasqual Subunit				
Z-05.Cl Highland Subarea	Q	1	138/ 1W- 5NO2S 49.9	13s/ 1W 5L01S 31.6
Z-05.C2 San Pasqual Subarea	39	9	.125/ 1W-35B025 73.8	13S/ IW- 4AOIS 11.2
Z-05.DO Santa Maria Valley Subunit				
Z-05.Dl Ramona Subarea	20	CU 1	135/ 1E-23K015 69.1	13S/ IW-24KOIS 9.7
Z-05.D3 Wash Hollow Subarea	г	с 1	13S/ 2E-15E01S 26.3	13S/ 2E-15E01S 23.4
Z-05.D4 Upper Hatfield Subarea	Ч	-1	13S/ 2E- 9HOLS 13.9	13S/ 2E- 9HOIS 13.4

AVERAGE CHANGES IN GROUND WATER ELEVATIONS

-82-

	erved extremes round water 63, in feet Minimum	13S/ 28-11COIS 15.1	13S/ 2E- 3EOLS 29.4		13S/ 1E- 3POIS 37.9	12S/ 3E-21NOIS 5.2			155/ 1E-20B04S 5.0	15s/ 1E- grols 52.2
IONS	: Location and observed extremes of depth to ground water during 1962-63, in feet : Maximum : Minimum	135/ 2E-10K01S 24.1	13S/ 2E 3E01S 30.1		12S/ 1E-34Q01S 70.1	12S/ 1E-11102S 21.2			13S/ 1E-17H02S 57.8	15S/ 1E- 9001S 58.7
AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN SAN DIEGO DRAINAGE PROVINCE DURING 1962-1963 (continued)	: Average : change in ground water : level during the year, in feet	2	ი ი		- 1	CJ 8			() +	
GE CHANGES IN GR IN HYDROLOGIC UN RAINAGE PROVINCE (cont	Number of wells considered in analysis	Q	ч		ત્ય	٢			9	6
AVERAC J DF	Hydrologic unit, subunit, and subarea	Z-05.D5 Ballena Subarea	Z-05.D6 Bast Santa Teresa Subarea	Z-05.E0 Santa Ysabel Subunit	Z-05.El Boden Suberea	Z-05.E2 Pamo Subarea	Z-07.00 San Diego Unit	Z-07.A0 Lower San Diego Subunit	Z-O7.A2 Santee Subarea	Z-O7.A5 El Monte Subarea

	Location and observed extremes of depth to ground water during 1962-63, in feet Maximum : Minimum	6AOIS 13S/ 4E- 6AOIS 96.0 0EOIS 17S/ 2W-25PO2S 2.9	1C03S 17S/ 1W- 1D01S 5.0
AVERAGE CHANGES IN GROUND WATER ELEVATIONS IN HYDROLOGIC UNITS IN SAN DIEGO DHAINAGE PROVINCE DURING 1962-1963 (continued)	: Location al of deptl during : Maximum	13S/ 4E- 6AOLS 96.0 17S/ IM-20EOLS 12.4	16s/ 1E-31C03S 22.1
	: Average : changes in : ground water : level during the year, in feet	1 I 1	۳ ۱
	Number of vells considered in analysis	ч б <mark>1</mark>	7
AVERAC	Hydrologic unit, subunit, and subarea	 Z-07.D0 Cuyamaca Subunit Z-07.D2 Spencer Subarea Z-09.00 Sweetwater Unit Z-09.A0 Lower Sweetwater Subunit Z-09.A2 Sweetwater Subarea Z-09.B0 Middle Sweetwater 	Z-09.Bl Jamecha Subarea

Santa Ana Forebay, which is located in the East Coastal Plain Subarea of the Santa Ana River Unit. In the Montebello area, 12,400 acre-feet of reclaimed water were also spread. This water was produced by the Water Reclamation Plant of the County Sanitation Districts of Los Angeles County at Whittier Narrows. The Department's Bulletin No. 80 series of reports describes the reclamation of water from sewage and industrial waters in more detail.

These artificial recharge activities played an important role in increasing the amounts of water stored underground and in retarding the decline of water levels. The measured or estimated amounts of artificial recharge to the underground reservoirs at the various projects during the 1962-63 water year are shown in Table 21.

-85-

TABLE 21

	:	: .	Number	:Reported or
	Areal	Agency n conducting	Number of	: estimated
Hydrologic unit	code	spreading	projects	: amount
	: number	operationa	operated	:spread, in
	: Itumber	· Operation	Opere.teu	: acre-feet
Santa Clara Calleguas Unit	U-03.00			
Oxnard Plain Subunit	U-03.AO			
Oxnard Subarea	U-03.Al	UWCD	2	16,276
Piru Subunit	U-03.DO			
Piru Subarea	U-03.Dl	UWCD	1	1,394
Los Angeles-San Gabriel				
River Unit	U-05.00			
Coastal Plain of Los Angeles				
County Subunit	U-05.AO			, h
West Coast Subarea	U-05.A2	LACFCD	2	5,554 ^b
Central Subarea	U-05.A5	LACFCD	3	84,600 [°]
San Fernando Subunit	U-05.BO			
San Fernando Subarea	U-05.Bl	LACFCD	3	1,058
		LADW&P	l	10,279
Tujunga Subarea	U-05.B3	LACFCD	l	52
Raymond Subunit	U-05.CO			
Pasadena Subarea	U-05.Cl	LACFCD	l	7
Monk Hill Subarea	U-05.C2	LACFCD	l	249
Santa Anita Subarea	U-05.C3	LACFCD	l	449
		CSMWD	l	919
San Gabriel Valley Subunit	U-05.DO			
Main San Gabriel Subarea	U-05.Dl	LACFCD	12	7,747
Upper Canyon Subarea	U-05.D3	SGRSC	l	16,966
		DWC	l	6,394
Spadra Subunit	U-05.EO			
Live Oak Subarea	U-05.E3	LACFCD	1	0
Anaheim Subunit	U-05.FO			5
Anaheim Subarea	U-05.Fl	AUWC	2	4,804 ^d
		OCFCD	l	66,054 ^e
		OCWD	1	21,037
Yorba Linda Subarea	U-05.F3	AUWC	1	1,905
Santa Ana River Unit	Y-01.00			
Lower Santa Ana River				
Subunit	Y-01.AO			
East Coastal Plain				
Subarea	Y-01.A1	OCWD	24	106,605 ^f
		AUWC	l	2,781 ^g
Santa Ana Narrows Subarea	Y-Ol.A3	SAVIC	l	1,444

SUMMARY OF PRINCIPAL GROUND WATER RECHARGE ACTIVITIES IN SOUTHERN CALIFORNIA DURING 1962-63 WATER YEAR

SUMMARY OF PRINCIPAL GROUND WATER RECHARGE ACTIVITIES IN SOUTHERN CALIFORNIA DURING 1962-63 WATER YEAR (continued)

Hydrologic unit	Areal designation code number	Agency conducting spreading operation	Number of projects operated	:Reported or : estimated : amount :spread, in : acre-feet
Middle Santa Ana River				
Subunit	Y-Ol.BO			
Chino Subarea	Y-O1.B1	SBCFCD	11	19 ^h
onino babarea	i or opr	EWC	2	30
Claremont Heights Subarea	Y-Ol.B3	PVPA	2	0
offer emotion Werferren Parent en	1 01.00	CPWD	1	73
Cucamonga Subarea	Y-Ol.B4	SAWC.	ī	659
	2	SBCFCD	4	40 ⁱ
Temescal Subarea	Y-01.B5	RCFC&WCD	l	180
Lake Mathews Subunit	Y-01.00			
Coldwater Subarea	Y-Ol.Cl	TWC	2	1,656 ^J
Lee Lake Subarea	Y-Ol.C4	TWC	2	0
Colton-Rialto Subunit	Y-Ol.DO			
Colton-Rialto Subarea	Y-Ol.D4	SBCFCD	2	n.a.
Reche Subarea	Y-01.D5	SBCFCD	l	n.a.
Upper Santa Ana Subunit	Y-Ol.EO			
Cajon Subarea	Y-Ol.El	SBCFCD	1	n.a. k
Bunker Hill Subarea	Y-01.E2	SBCFCD	6	1,064"
		SBVWCD	1	502
Mentone Subarea	Y-Ol.E4	SBVWCD	1	171
Santa Ana Canyon Subarea	Y-Ol.E7	SBVWCD	1	0
Sycamore Subarea	Y-01.E9	FUWC	1	634
Sen Timoteo Subunit	Y-Ol.FO	CDCDCD	7	
Yucaipa Subarea Oak Glen Subarea	Y-Ol.Fl	SBCFCD SBCFCD	1	n.a.
Nobie Creek Subarea	Y-01.F6 Y-01.F9	RCFC&WCD	1	n.a.
Noble Creek Subarea	1-01.19	NCT COM CD	1	3
San Jacinto Valley Unit	Y-02.00			
San Jacinto Subunit	Y-02.B0			
San Jacinto Subarea	Y-02.Bl	RCFC&WCD	l	2
bai bacinto babarca				
TOTAL LOCAL AND IMPORTED	WATER REPORT	FED SPREAD		361,607
TOTAL IMPORTED WATER REPO	ORTED SPREAD			279,801
				81,806
TOTAL LOCAL WATER REPORT	ED SPREAD			01,000

a. Abbreviations of agencies conducting spreading operations are presented in alphabetical order: AUWC-Anaheim Union Water Company; CPWD-City of Pomona Water Department; CSMMD-City of Sierra Madre Water Department; DMWC-Duarte

SUMMARY OF PRINCIPAL GROUND WATER RECHARGE ACTIVITIES IN SOUTHERN CALIFORNIA DURING 1962-63 WATER YEAR (continued)

Mutual Water Company; ESWC-East Side Water Committee EWC-Etiwanda Water Company; FUWC-Fontana Union Water Company; GIC-Glendora Irrigation Company; IACFCD-Los Angeles County Flood Control District; IADW&P-Los Angeles Department of Water and Power; OCFCD-Orange County Flood Control District; OCWD-Orange County Water District; PVPA-Pomona Valley Protective Associatio RCFC&WCD-Riverside County Flood Control and Water Conservation District; SAVIC-Santa Ana Valley Irrigation Company; SAWC-San Antonio Water Company; SBCFCD-San Bernardino County Flood Control District; SBVWCD-San Bernardino Valley Water Conservation District; SGRSC-San Gabriel River Spreading Corporation; TWC-Temescal Water Company; UWCD-United Water Conservation District; VCFCD-Ventura County Flood Control District.

- b. Includes 4,148 acre-feet of softened Colorado River water.
- c. Includes 74,690 acre-feet of unsoftened Colorado River water.
- d. Includes 3,851 acre-feet of unsoftened Colorado River water.
- e. Includes 65,575 acre-feet of unsoftened Colorado River water.
- f. Total quantity is unsoftened Colorado River water.
- g. Includes 2,299 acre-feet of unsoftened Colorado River water.
- h. Eighth Street project reporting, ten others not available.
- i. Red Hill and 15th Street projects reporting, two others not available.
- j. Includes 1,596 acre-feet of unsoftened Colorado River water.
- k. Waterman Canyon, Twin Creek, and Rialto Baseline projects reporting, 3 others not available.

CHAPTER VI. MISCELLANEOUS ACTIVITIES AFFECTING WATER SUPPLY CONDITIONS

The formation of water districts and construction activities relating to water often affect the water supply conditions in Southern California; for this reason a brief outline of the more important activities that occurred during the 1962-63 water year is presented below.

Construction of Dams

Five dams with impounding capacities greater than 100 acre-feet were completed during the water year. These were Chet Harritt Dam at Lakeside, San Diego County; Encino Dam at Encino, Los Angeles County; Palisades Dam at Capistrano Beach, Orange County; Squires Dam at Agua Hedionda, San Diego County; and Villa Park Dam on Santiago Creek, Orange County. Two additional projects under construction, Alta Loma Dam on Alta Loma Channel, San Bernardino County, and San Joaquin Reservoir Dam on a tributary of Bonita Creek between Big Canyon and Coyote Canyon, Orange County, were incomplete as of September 30, 1963. Table 22 gives the beginning date of construction of the above-mentioned dams, their purpose, capacity in acre-feet, and the agency responsible for the construction.

Water Supply Projects

During the 1962-63 water year The Metropolitan Water District of Southern California was constructing the Robert B. Diemer Filtration Plant near Yorba Linda with an initial capacity of 200 million gallons per day. The plant began operation in December 1963. Preliminary plans were to complete the plant to its ultimate capacity of 400 million gallons per day of softened and filtered water. The District was also preparing

-89-

TABLE 22

DAM PROJECTS COMPLETED OR UNDER CONSTRUCTION TN SOUTHERN CALLFORNIA DURING THE 1962-63 MATER YEAR*

1 2

Tom and toot	Cons	Construction	Agency	Dimoco		Reservoir
naur project	Started	Started ; Completed	construction	- turbose		capacity, in acre-feet
Alta Loma	June 1961	Incomplete	San Bernardino County Flood Control District	Flood control	Alta Loma Channel, San Bernardino County	108
Chet Harritt	April 1961	October 1962	Helix Irrigation District	Terminal storage	Lakeside, San Diego County	10,500
Encino	October 1960	October 1962	Los Angeles Department of Water and Power	Terminal storage	Encino, Los Angeles County	10, 300
Palisades	July 1962	August 1963	Tri Cities Municipal Water District	Terminal storage	Capistrano Beach, Orange County	Τ4Τ
Sen Joaquin	January 1963	Incomplete	Irvine Ranch Water District	Terminal storage	Tributary Bonita Creek, Orange County	3,036
Squires	January 1962	March 1963	Carlsbad Municipal Water District	Terminal storage	Agua Hedionda, San Diego County	600
Villa Park	May 1961	January 1963	Orange County Flood Control District	Flood control and conservation	Santiago Creek, Orange County	15,600

*Greater than 100 acre-feet capacity.

the plans and specifications for the expansion of the softening facilities at the F. B. Weymouth Plant at La Verne. The additional softener units will make it possible for the plant to produce 400 million gallons per day of finished water having an average hardness of 125 parts per million.

Water District Formation Activities

During the 1962-63 fiscal year, The Metropolitan Water District of Southern California annexed five areas. The Upper San Gabriel Valley Municipal Water District was annexed to the Metropolitan Water District, and in Orange County two small areas were concurrently annexed to Coastal Municipal Water District and to Metropolitan. In Riverside County four small areas were concurrently annexed to Eastern Municipal Water District and to Metropolitan. In San Diego County the City of Del Mar was concurrently annexed to San Diego County Water Authority and to the Metropolitan Water District. Also in San Diego County a small fringe area was concurrently annexed to Olivenhain Municipal Water District, to the County Water Authority, and to the Metropolitan Water District. In Ventura County, two small areas were concurrently annexed to Calleguas Municipal Water District and to the Metropolitan Water District.

In addition to the above-noted annexations to major water agencies, the following water districts were formed in Southern California during the 1962-63 fiscal year:

> Los Angeles County: County Water Works District No. 35 County Water Works District No. 36 Upper Santa Clara Valley Water Agency Orange County: Santiago County Water District

> > -91-

Riverside County:	Murieta County Water District			
	Calimesa County Water District			
San Bernardino County:	Palm Wells County Water District			
county.	Star Vista County Water District			
	Yucca Valley County Water District			
	Crestline-Lake Arrowhead Water Agency			
	Joshua Basin County Water District			
Ventura County:	Camarillo County Water District			
San Luis Obispo County:	Mooro Del Mar County Water District			
San Diego County:	Del Luz Heights Municipal Water District			
	Catwood in the Pines County Water District			

Catwood in the Pines County Water Distr Yuima Municipal Water District

Mootmai Municipal Water District

ATTACHMENT 1

NAMES AND AREAL CODE NUMBERS CENTRAL COASTAL DRAINAGE PROVINCE (T)

ATTACHMENT 1

NAMES AND AREAL CODE NUMBERS CENTRAL COASTAL DRAINAGE PROVINCE*

New Designation		Old	Designation
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
T-09.00**	Salinas Hydrologic Unit	3- 4.00	Salinas Valley
т-09.но	Paso Robles Hydrologic Subunit	3- 4.06	Paso Robles Basin
T-09.10	Pozo Hydrologic Subunit	3- 4.07	Pozo Basin
T-10.00	San Luis Obispo Hydrologic Unit	-	-
T-10.A0	Cambria Hydrologic Subunit	3-21.00	Cambria Group
T-10.A	l San Carpoforo Hydrologic Subarea	3-21.01	San Carpojo Basin
T-10.A	2 Arroyo de La Cruz Hydrologic Subarea	3-21.02	Arroyo de La Cruz Basin
T-10.A	3 San Simeon Hydrologic Subarea	3-21.03	San Simeon Basin
T-10.A	4 Santa Rosa Hydrologic Subarea	3-21.04	Santa Rosa Basin
T-10.A	5 Villa Hydrologic Subarea	3-21.05	Villa Basin
T-10.A6	6 Cayucos Hydrologic Subarea	3-21.06	Cayucos Basin
T-10.A	7 Old Hydrologic Subarea	3-21.07	Old Basin
T-10.A	B Toro Hydrologic Subarea	3-21.08	Toro Basin
T-10.BO	San Luis Obispo Hydrologic Subunit	3- 8.00	San Luis Obispo Group
T-10.B	l Morro Hydrologic Subarea	3- 8.01	Morro Basin

^{*}Boundaries of hydrologic areas are shown on Plates 1 and 7. **Since the Central Coastal Drainage Province extends into both Northern and Southern California, code numbers T-01.00 through T-08.00 were not utilized in anticipation of their possible use for hydrologic units in the northern portion of the province.

NAMES AND AREAL CODE NUMBERS CENTRAL COASTAL DRAINAGE PROVINCE (continued)

New Designation

Old Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	<u>Code</u>	Basin or Valley
T-10.B2	Chorro Hydrologic Subarea	3- 8.02	Chorro Basin
T-10.B3	Los Osos Hydrologic Subarea	3- 8.03	Los Osos Basin
T-10.B4	San Luis Obispo Creek Hydrologic Subarea	3- 8.04	San Luis Obispo Basin
T-10.B5	Point San Luis Hydrologic Subarea	-	-
T-10.B6	Pismo Hydrologic Subarea	3- 8.05	Pismo Beach
T-10.CO	Arroyo Grande Hydrologic Subunit	3-11.00	Arroyo Grande Group
T-10.Cl	Arroyo Grande Hydrologic Subarea	3-11.01	Arroyo Grande Basin
T-10.C2	Nipomo Mesa Hydrologic Subarea	3-11.02	Nipomo Mesa Basin
T-11.00	Carrizo Plain Hydrologic Unit	3-19.00	Carrizo Plain
T-12.00	Santa Maria-Cuyama Hydrologic Unit	-	-
T-12.A0	Santa Maria Hydrologic Subunit	3-12.00	Santa Maria River Valley
T-12.BO	Sisquoc Hydrologic Subunit	-	-
T-12.CO	Cuyama Valley Hydrologic Subunit	3-13.00	Cuyama River Valley
T-13.00	San Antonio Hydrologic Unit	3-14.00	San Antonio Creek Valley
T-14.00	Santa Ynez Hydrologic Unit	3-15.00	Santa Ynez River Valley

NAMES AND AREAL CODE NUMBERS CENTRAL COASTAL DRAINAGE PROVINCE (continued)

Ne	w Designation	Old Designation		
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley	
T-14.AO	Lompoc Hydrologic Subunit	3-15.01	Lompoc Subarea	
T-14.BO	Santa Rita Hydrologic Subunit	3-15.02	Santa Rita Subarea	
T-14.CO	Buellton Hydrologic Subunit	3-15.03	Buellton Subarea	
T-14.DO	Santa Ynez Hydrologic Subunit	3-15.04	Santa Ynez Subarea	
T-14.EO	Headwater Hydrologic Subunit	3-15.05	Headwater Subarea	
T-15.00	Santa Barbara Hydrologic Unit	-	-	
T-15.AO	Arguello Hydrologic Subunit	3-22.00	Santa Barbara County Coastal Group	
T-15.CO	South Coast Hydrologic Subunit	3-16.00	South Coast Basins (Santa Barbara County)	
T-15.C1	Goleta Hydrologic Subarea	3-16.01	Goleta Basin	
T-15.C2	Santa Barbara Hydrologic	3-16.02	Santa Barbara Basin	
T-15.C3	Montecito Hydrologic Subarea	3-16.03	Montecito Subarea	
T-15.C4	Carpinteria Hydrologic Subarea	3-16.04	Carpinteria Basin	
T-16.00	Santa Barbara Channel Islands Hydrologic Unit	-	-	
T-16.A0	San Miguel Island Hydrologic Subunit	-	-	
T-16.BO	Santa Rosa Island Hydrologic Subunit	-	-	
T-16.CO	Santa Cruz Island Hydrologic Subunit	-	-	

1-3

ATTACHMENT 2

NAMES AND AREAL CODE NUMBERS

NAMES AND AREAL CODE NUMBERS

ATTACHMENT 2

ATTACHMENT 2

NAMES AND AREAL CODE NUMBERS LOS ANGELES DRAINAGE PROVINCE*

New Designation			Old	Designa	tion	
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Co	ode	Basin	or Valley	
U-01.00	Rincon Creek Hydrologic Unit		-		-	
U-02.00	Ventura River Hydrologic Unit		-		-	
U-02.A0	Lower Ventura River Hydrologic Subunit	4-	3.01	Lower Basi	Ventura Rive n	r
U-02.B0	Upper Ventura Rivei Hydrologic Subunit	4-	3.02	Upper Basi	Ventura Rive n	r
U-02.CO	Ojai Hydrologic Subunit		-		-	
U-02.C	l Upper Ojai Hydrologic Subarea	4-	1.00	only a area i remain	Ojai Valley portion of s utilized; der is Sisar ogic Subarea 2)	this the
U-02.C2	2 Ojai Hydrologic Subarea	4-	2.00	Ojai V	alley	
U-03.00	Santa Clara-Calleguas Hydrologic Unit		-		-	
U-03.A0	Oxnard Plain Hydrologic Subunit		-		-	
U-03. A:	l Oxnard Hydrologic Subarea		4.03 4.02		Pressure Are Plain Foreb	
		4-	4.01		Plain Press	ure
U-03.A2	2 Pleasant Valley Hydrologic Subarea	4-	6.00	Pleasa	nt Valley	
U-03.BO	Santa Paula Hydrologic Subunit		-		-	
U-03.B	L Santa Paula Hydrologic Subarea	4-	4.04	Santa	Paula Basin	

*Boundaries of hydrologic areas are shown on Plates 1 and 8.

New Designation

Old Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
U-03.B2	Sisar Hydrologic Subarea	4- 1.00	Upper Ojai Valley (Now only a portion of this area is utilized; the remainder is Upper Ojai Hydrological Subarea, U-02.Cl)
U-03.CO	Sespe Hydrologic Subunit	-	-
U-03.Cl	Fillmore Hydrologic Subarea	4- 4.05	Fillmore Basin
U-03.C2	Sespe Hydrologic Subarea	-	-
U-03.DO	Piru Hydrologic Subunit	-	-
U-03.D1	Piru Hydrologic Subarea	4- 4.06	Piru Basin
U-03.D2	Upper Piru Hydrologic Subarea	-	-
U-03.D3	Hungry Valley Hydrologic Subarea	-	-
U-03.D4	Stauffer Hydrologic Subarea	-	-
U-03.E0	Upper Santa Clara River Hydrologic Subunit	-	-
U-03.El	Eastern Hydrologic Subarea	4- 4.07	Eastern Basin
U-03.E2	Bouquet Hydrologic Subarea	-	-
U-03.E3	Mint Canyon Hydrologic Subarea	-	-

New Designation		Old Designation		
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley	
U-03.E4	Sierra Pelona Hydrologic Subarea	4- 5.00	Acton Valley (Now only a portion of this area is utilized; the re- mainder is Acton Hydro- logic Subarea, U-03.E5)	
U-03.E5	Acton Hydrologic Subarea	4- 5.00	Acton Valley (Now only a portion of this area is utilized; the re- mainder is Sierra Pelona Hydrologic Subarea, U-03.E ⁴)	
U-03.F0	Calleguas-Conejo Hydrologic Subunit	-	-	
U-03.Fl	West Las Posas Hydrologic Subarea	4- 8.01	West Las Posas Basin	
U-03.F2	East Las Posas Hydrologic Subarea	4- 8.02	East Las Posas Basin	
U-03.F3	Arroyo Santa Rosa Hydrologic Subarea	4- 7.00	Arroyo Santa Rosa Valley	
U-03.F4	Conejo Valley Hydrologic Subarea	4-10.00	Conejo Valley (Now only a portion of this area is utilized; the re- mainder is Thousand Oaks Hydrologic Subarea, U-03.F8)	
U-03.F5	Tierra Rejada Valley Hydrologic Subarea	4-15.00	Tierra Rejada Valley	
U-03.F6	Gillibrand Hydrologic Subarea	-	-	
U-03.F7	Simi Valley Hydrologic Subarea	4- 9.00	Simi Valley	

New Designation		Old Designation	
]	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
U-03.F8	Thousand Oaks Hydrologic Subarea	l+- 10.00	Conejo Valley (Now on a portion of this area is utilized; the re- mainder is Conejo Val Hydrologic Subarea, (U-03.F4)
U-0 ¹ +.00	Malibu Hydrologic Unit	4-16.00	Malibu Coastal Group
U-04.A0	Topanga Hydrologic Subunit	-	-
U-04.Al	Topanga Canyon Hydrologic Subarea	-	
U-04.A2	Tuna Canyon Hydrologic Subarea	-	-
U-04.A3	Pena Canyon Hydrologic Subarea	**	-
U-04.A4	Piedra Gorda Canyon Hydrologic Subarea	4-16.20	Piedra Gorda Canyon Basin
U-04.A5	Las Flores Canyon Hydrologic Subarea	4-16.19	Las Flores Canyon Basin
U-04.A6	Carbon Canyon Hydrologic Subarea	-	-
U-04.BO	Malibu Creek Hydrologic Subunit	-	-
U-04.Bl	Malibu Creek Hydrologic Subarea	4-16.16	Malibu Creek Basin
U-04.B2	Las Virgenes Canyon Hydrologic Subarea	4-16.25	Las Virgenes Canyon Basin
U-04.B3	Lindero Canyon Hydrologic Subarea	-	-
U-04.B4	Triunfo Canyon Hydrologic Subarea	-	-

New Designation		Old	Old Designation		
H	Mydrologic Unit, Mydrologic Subunit and Mydrologic Subarea	Code	Basin or Valley		
U-04.B5	Russell Valley Hydrologic Subarea	4-16.02	Russell Basin		
U-0 ¹ 4.B6	Sherwood Hydrologic Subarea	4-16.01	Hidden Valley Basin		
U-04.CO	Point Dume Hydrologic Subunit	-	-		
U-04.Cl	Corral Canyon Hydrologic Subarea	-	-		
U-04.C2	Solstice Canyon Hydrologic Subarea	4-16.14	Solstice Canyon Basin		
U-04.C3	Latigo Canyon Hydrologic Subarea	-	-		
U-04.C4	Escondido Canyon Hyd rolo gic Subarea	-	-		
U-04.C5	Ramera Canyon Hydrologic Subarea	4-16.11	Ramera Canyon Basin		
U-04.C6	Zuma Canyon Hydrologic Subarea	4-16.10	Zuma Canyon Basin		
U-04.C7	Trancas Canyon Hydrologic Subarea	4-16.09	Trancas Canyon Basin		
U-04.DO	Camarillo Hydrologic Subunit	-	-		
U-04.Dl	Encinal Canyon Hydrologic Subarea	-	-		
U-04.D2	Los Alisos Canyon Hydrologic Subarea	-	-		
U-04.D3	Nicholas Canyon Hydrologic Subarea	-	-		
U-04.D4	Arroyo Sequit Hydrologic Subarea	4-16.05	Arroyo Sequit Canyon Basin		

New Designation		Old Designation	
Hyd	drologic Unit, drologic Subunit and drologic Subarea	Code	Basin or Valley
U-04.D5	Little Sycamore Canyon Hydrologic Subarea	-	-
U-04.D6	Deer Canyon Hydrologic Subarea	-	-
U-04.D7	Big Sycamore Canyon Hydrologic Subarea	-	-
U-04.D8	La Jolla Valley Hydrologic Subarea	-	-
	Angeles-San Gabriel River Aydrologic Unit	-	-
U-05.A0 C	Coastal Plain of Los Angeles County Hydrologic Subunit	-	-
U-05.Al	Palos Verdes Hydrologic Subarea	-	-
U-05.A2	West Coast Hydrologic Subarea	4-11.02	West Coast Basin
U-05.A3	Santa Monica Hydrologic Subarea	4-11.01	West Coast Basin N o r
U-05.A4	Hollywood Hydrologic Subarea	4-11.06	Hollywood Basin
U-05.A5	Central Hydrologic Subarea	4-11.03 4-11.04 4-11.05 4-11.08 4-11.07	Central Coastal Plai Pressure Area Los Angeles Forebay Montebello Forebay A La Habra Basin Los Angeles Narrows 1 (A portion of this b is part of Central 1 logic Subarea, U-05 and the remainder i of San Fernando Hyd Subarea, U-05.Bl)

New	Designation	Old	Designation
F	Aydrologic Unit, Aydrologic Subunit and Aydrologic Subarea	Code	Basin or Valley
U-05. BO	San Fernando Hydrologic Subunit	-	-
U-05.Bl	San Fernando Hydrologic Subarea	4-12.01 4-12.02 4-11.07	San Fernando Basin Bull Canyon Basin Los Angeles Narrows Basin (A portion of this basin is part of San Fernando Hydrologic Subarea, U-05.Bl, and the remain- der is part of Central Hydrologic Subarea, U-05.A5)
U-05.B2	Sylmar Hydrologic Subarea	4-12.04 4-12.03	Pacoima Basin Sylmar Basin
U-05.B3	Tujunga Hydrologic Subarea	4-12.06 4-12.05	Little Tujunga Basin Tujunga Basin
U-05.B4	Verdugo Hydrologic Subarea	4-12.07	Verdugo Basin
U-05.B5	Eagle Rock Hydrologic Subarea	-	-
U-05.CO	Raymond Hydrologic Subunit	-	-
U-05.Cl	Pasadena Hydrologic Subarea	4-13.03	Pasadena Subarea
U-05.C2	Monk Hill Hydrologic Subarea	4-13.02	Monk Hill Basin
U-05.C3	Santa Anita Hydrologic Subarea	4-13.04	Santa Anita Subarea
U-05.DO	Santa Gabriel Valley Hydrologic Subunit	-	-
U-05.Dl	Main San Gabriel Hydrologic Subarea	4-13.01 4-13.07 4-13.08 4-13.09 4-13.12	Main San Gabriel Basin Glendora Basin Way Hill Basin San Dimas Basin Puente Basin

New Designation

H	lydrologic Unit, Lydrologic Subunit and	Codo	Posin on Volley
Code H	lydrologic Subarea	Code	Basin or Valley
U-05.D2	Lower Canyon Hydrologic Subarea	4-13.06	Lower Canyon Basin
U-05.D3	Upper Canyon Hydrologic Subarea	4-13.05	Upper Canyon Basin
U-05.D4	Foothill Hydrologic Subarea	4-13.10	Foothill Basin
U-05.E0	Spadra Hydrologic Subunit	-	-
U-05.El	Spadra Hydrologic Subarea	4-13.11	Spadra Basin
U-05.E2	Pomona Hydrologic Subarea	4-14.02	Pomona Basin (Now only a portion of this area is utilized; the remainder is Harrison Hydrologic Subarea, Y-O1.B2)
U-05.E3	Live Oak Hydrologic Subarea	4-14.03 4-14.04	Live Oak Basin Claremont Heights Basin (Now only a portion of this area is utilized; the remainder is part of Claremont Heights Hydro- logic Subarea, Y-Ol.B3)
U-05.FO	Anaheim Hydrologic Subunit	-	-
U-05.Fl	Anaheim Hydrologic Subarea	8- 1.01	East Coastal Plain Pres- sure Area (Now only a portion of this area is utilized; the remainder is East Coastal Plain Hydrologic Subarea, Y-O1.A1)
		8- 1.02	Santa Ana Forebay Area (Now only a portion of this area is utilized; the remainder is East Coastal Plain Hydrologic Subarea, Y-OL.Al)

New	Designation	Old	Designation
I	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
U-05.F2	La Habra Hydrologic Subarea	8- 1.04	La Habra Basin
U-05.F 3	Yorba Linda Hydrologic Subarea	8- 1.05	Yorba Linda Basin
U-06.00 S	San Pedro Channel Islands Hydrologic Unit	-	-
U-06.A0	Anacapa Island Hydrologic Subunit	-	-
U-06.BO	San Nicolas Island Hydrologic Subunit	-	-
U-06.CO	Santa Barbara Island Hydrologic Subunit	-	-
U-06.D0	Santa Catalina Island Hydrologic Subunit	-	-
U-06.E0	San Clemente Island Hydrologic Subunit	-	-

NAMES AND AREAL CODE NUMBERS

NAMES AND AREAL CODE NUMBERS LAHONTAN DRAINAGE PROVINCE*

New Designation

Old Designation

	Hydrologic Unit, Hydrologic Subunit and		
Code	Hydrologic Subarea	Code	Basin or Valley
W-01.00	Mono Hydrologic Unit	6- 9.00	Mono Valley
W-02.00	Adobe Hydrologic Unit	6-10.00	Adobe Lake Valley .
W-03.00	Owens Hydrologic Unit	-	-
W-03.A0	Long Hydrologic Subunit	6-11.00	Long Valley
W-03.BO	Upper Owens Hydrologic Subunit	6-12.00	Owens Valley (Now only a portion of this area is utilized; the remainder is Lower Owens Hydrologic Subunit, W-03.CO)
W-03.CO	Lower Owens Hydrologic Subunit	6-12.00	Owens Valley (Now only a portion of this area is utilized; the remainder is Upper Owens Hydrologic Subunit, W-03.BO)
W-03.DO	Centennial Hydrologic Subunit	6-13.00	Black Springs Valley
W-04.00	Fish Lake Hydrologic Unit	6-14.00	Fish Lake Valley
W-05.00	Deep Springs Hydrologic Unit	6-15.00	Deep Springs Valley
W-06.00	Eureka Hydrologic Unit	6-16.00	Eureka Valley
W-06.A0	Marble Bath Hydrologic Subunit	-	
W-06.BO	Eureka Hydrologic Subunit	-	-

*Boundaries of hydrologic areas are shown on Plates 1 and 9.

3-1

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
₩-07.00	Saline Hydrologic Unit	6-17.00	Saline Valley (Now only a portion of this area is utilized; the remainder is Race Track Hydrologic Unit, W-08.00)
W-07.A0	Saline Hydrologic Subunit	-	-
W-07.BO	Cameo Hydrologic Subunit	-	
w-08.00	Race Track Hydrologic Unit	6-17.00	Saline Valley (Now only a portion of this area is utilized; the remain- der is Saline Hydrologic Unit, W-07.00)
W-08.A0	Race Track Hydrologic Subunit	-	-
W-08.BO	Hidden Valley Hydrologic Subunit	-	-
W-08.CO	Ulida Hydrologic Subunit	-	-
W-08.DO	Sand Flat Hydrologic Subunit	-	-
W-09.00	Amargosa Hydrologic Unit	-	
W-09.A0	Death Valley Hydrologic Subunit	-	
W-09.	Al Death Valley Hydrologic Subarea	6-18.00	Death Valley
W-09.	A2 Harrisburgh Hydrologic Subarea	-	-
W-09.	A3 Wingate Wash Hydrologic Subarea	6-19.00	Wingate Valley

New	Designation	<u>o</u>	ld Designation
H	ydrologic Unit, ydrologic Subunit and ydrologic Subarea	Code	Basin or Valley
W-09.BO	Valjean Hydrologic Subunit	-	
W-09.Bl	Avawatz Hydrologic Subarea	6-26.00	Avawatz Valley
W-09.B2	Red Pass Hydrologic Subarea	6-24.00	Red Pass Valley
W-09.B3	Valjean Hydrologic Subarea	6-21.00 6-23.00	
W-09.B4	Shadow Hydrologic Subarea	6-22.00	Upper Kingston Valley
W-09.CO	Furnace Creek Hydrologic Subunit	-	
W-09.Cl	. Furnace Creek Hydrologic Subarea	-	· · · ·
W-09.C2	Creenwater Hydrologic Subarea	-	•
W-09.DO	Amargosa Hydrologic Subunit	6-20.00	Middle Amargosa Valley
W-09.D1	. Calico Hydrologic Subarea	-	-
W-09.D2	Amargosa Hydrologic Subarea	-	
W-09.D3	Chicago Hydrologic Subarea	-	-
W-09.D4	California Hydrologic Subarea	-	-

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
W-10.00	Pahrump Hydrologic Unit	6-28.00	Pahrump Valley
W-11.00	Mesquite Hydrologic Unit	6-29.00	Mesquite Valley
W-12.00	Ivanpah Hydrologic Unit	6-30.00	Ivanpah Valley
W-13.00	Owlshead Hydrologic Unit	-	
W-13.AO	Lost Lake Hydrologic Subunit	-	-
W-13.BO	Owlshead Hydrologic Subunit	-	-
W-14.00	Leach Hydrologic Unit	6-27.00	Leach Valley
W-15.00	Nelson Hydrologic Unit	-	-
W-15.AO	McLean Hydrologic Subunit	-	-
W-15.BO	Nelson Hydrologic Subunit	-	-
W-16.00	Bicycle Hydrologic Unit	6-25.00 6-37.00	
W-17.00	Goldstone Hydrologic Unit	6-48.00	Goldstone Valley
W-18.00	Coyote Hydrologic Unit	6-37.00	Coyote Lake Valley (Now only a portion of this area is utilized; the re mainder is included in Bicycle Hydrologic Unit, W-16.00)

New Designation

Н	ydrologic Unit, ydrologic Subunit and ydrologic Subarea	Code	Basin or Valley
W-19.00 S	uperior Hydrologic Unit	6-49.00	Superior Valley
W-20.00 P	anamint Hydrologic Unit	-	-
W-20.A0	Wingate Pass Hydrologic Subunit	-	-
W-20.BO	Wild Rose Hydrologic Subunit	-	-
W-20.B1	White Sage Hydrologic Subarea	-	-
W-20.B2	Wild Rose Hydrologic Subarea	-	-
W-20.CO	Lee Flat Hydrologic Subunit	-	-
W-20.DO	Santa Rosa Flat Hydrologic Subunit	-	-
W-20.D1	. Santa Rosa Flat Hydrologic Subarea	-	
W-20.D2	Rainbow Hydrologic Subarea	-	-
W-20.D3	Silver Dollar Hydrologic Subarea	-	-
W-20.E0	Darwin Hydrologic Subunit	6-57.00	Darwin Valley
W-20.FO	Panamint Hydrologic Subunit	6-58.00	Panamint Valley
W-20.GO	Brown Hydrologic Subunit	-	-

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
W-20.HO	Robbers Hydrologic Subunit	6-51.00	Pilot Knob Valley (Now only a portion of this area is utilized; the remainder is Pilot Knob Hydrologic Subunit,
11 01 00	Oseniss Wednelseds Wedd		W-21.CO)
W-21.00	Searles Hydrologic Unit	-	-
W-21.A0	Searles Hydrologic Subunit	6-52.00	Searles Valley
W-21.BO	Salt Wells Hydrologic Subunit	6-53.00	Salt Wells Valley
W-21.CO	Pilot Knob Hydrologic Subunit	6-51.00	Pilot Knob Valley (Now only a portion of this area is utilized; the remainder is Robbers Hydrologic Subunit, W-20.HO)
W-22.00	Coso Hydrologic Unit	6-55.00	Coso Valley
W-22.A0	Wild Horse Hydrologic Subunit	-	-
W-22.BO	Coso Hydrologic Subunit	-	-
W-23.00	Upper Cactus Hydrologic Unit	-	-
W-24.00	Indian Wells Hydrologic Unit	-	-
W-24.A0	Rose Hydrologic Subunit	6-56.00	Rose Valley
W-24.BO	Indian Wells Hydrologic Subunit	6-54.00	Indian Wells Valley
W-25.00	Fremont Hydrologic Unit	-	-

New Designation	0	ld Designation
Hydrologic Unit, Hydrologic Subunit and		
Code Hydrologic Subarea	Code	Basin or Valley
W-25.AO Dove Springs Hydrologic Subunit	-	
W-25.BO Kelso-Landis Hydrologic Subunit	-	-
W-25.CO East Tehachapi Hydrologic Subunit	6-45.00	Tehachapi Valley East
W-25.DO Koehn Hydrologic Subunit	6-46.00	Fremont Valley
W-26.00 Antelope Hydrologic Unit	6-44.00	Antelope Valley
W-26.AO Antelope Hydrologic Subunit		-
W-26.Al Chafee Hydrologic Subarea	6-44.04	Chafee Basin
W-26.A2 Gloster Hydrologic Subarea	6-44.03	Gloster Basin
W-26.A3 Willow Springs Hydrologic Subarea	6-44.02	Willow Springs Basin
W-26.A4 Neenach Hydrologic Subarea	6-44.01	Neenach Basin
W-26.A5 Lancaster Hydrologic Subarea	6-44.05	Lancaster Basin
W-26.A6 North Muroc Hydrologic Subarea	6-44.08	North Muroc Basin
W-26.A7 Buttes Hydrologic Subarea	6-44.06	Buttes Basin
W-26.A8 Rock Creek Hydrologic Subarea	6-44.07	Rock Creek Basin

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
W-27.00	Cuddeback Hydrologic Unit	6-50.00	Cuddeback Valley
W-28.00	Mojave Hydrologic Unit	-	-
W-28.A0	El Mirage Hydrologic Subunit	6-43.00	El Mirage Valley
W-28.BO	Upper Mojave Hydrologic Subunit	6-42.00	Upper Mojave River Valley
W-28.CO	Middle Mojave Hydrologic Subunit	6-41.00	Middle Mojave River Valley
W-28.DO	Harper Hydrologic Subunit	-	-
W-28.	Dl Grass Valley Hydrologic Subarea	-	-
W-28.	D2 Harper Hydrologic Subarea	6-47.00	Harper Valley
W-28.EO	Lower Mojave Hydrologic Subunit	6-40.00	Lower Mojave River Valley
W-28.FO	Troy Hydrologic Subunit	-	-
W-28.	Fl Kane Wash Hydrologic Subarea	-	-
W-28.	F2 Troy Hydrologic Subarea	6-39.00	Troy Valley
W-28.GO	Afton Hydrologic Subunit	-	-
W-28.	Gl Caves Hydrologic Subarea	6-38.00	Caves Canyon Valley

New Designation	<u>0</u>	ld Designation
Hydrologic Unit, Hydrologic Subunit and Code Hydrologic Subarea	Code	Basin or Valley
W-28.G2 Cronese Hydrologic Subarea	6-35.00	Cronese Valley
W-28.G3 Langford Hydrologic Subarea	6-36.00	Langford Valley
W-28.HO Baker Hydrologic Subunit	-	-
W-28.Hl Silver Lake Hydrologic Subarea	6-34.00	Silver Lake Valley
W-28.H2 Soda Lake Hydrologic Subarea	6-33.00	Soda Lake Valley
W-28.I0 Kelso Hydrologic Subunit	6-31.00	Kelso Valley
1-29.00 Broadwell Hydrologic Unit	6-32.00	Broadwell Valley

W

3-9

ATTACHMENT 4

NAMES AND AREAL CODE NUMBERS COLORADO RIVER BASIN DRAINAGE PROVINCE*

New Designation

Old Designation

	Hydrologic Unit, Hydrologic Subunit and		
Code	Hydrologic Subarea	Code	Basin or Valley
X-01.00	Lucerne Hydrologic Unit	7-19.00	Lucerne Valley
X-02.00	Johnson Hydrologic Unit	7-18.00	Johnson Valley
X-03.00	Bessemer Hydrologic Unit	7-15.00	Bessemer Valley
X-04.00	Means Hydrologic Unit	7-17.00	Means Valley
X-05.00	Emerson Hydrologic Unit	7-16.00	Ames Valley
X-06.00	Lavic Hydrologic Unit	7-14.00	Lavic Valley
X-07.00	Deadman Hydrologic Unit	7-13.00	Deadman Valley
x-08.00	Joshua Tree Hydrologic Unit	-	-
X-08.A0	Warren Hydrologic Subunit	7-12.00	Warren Valley
х-08.во	Copper Mountain Hydrologic Subunit	7-11.00	Copper Mountain Valley
X-09.00	Dale Hydrologic Unit	-	-
X-09.A0	Twentynine Palms Hydrologic Subunit	7-10.00	Twentynine Palms Valley
X-09.BO	Dale Hydrologic Subunit	7- 9.00	Dale Valley
X-10.00	Bristol Hydrologic Unit	-	-
X-10.A0	Bristol Hydrologic Subunit	7- 8.00	Bristol Valley
X-10.BO	Fenner Hydrologic Subunit	7- 2.00	Fenner Valley
X-11.00	Cadiz Hydrologic Unit	7- 7.00	Cadiz Valley

*Boundaries of hydrologic areas are shown on Plates 1 and 10.

4-1

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
X-12.00	Ward Hydrologic Unit	7- 3.00	Ward Valley
X-13.00	Piute Hydrologic Unit	-	-
X-13.A0	Lanfair Hydrologic Subunit	7-1.00	Lanfair Valley
X-13.BO	Piute Hydrologic Subunit	7-45.00	Piute Valley
X-13.CO	Needles Hydrologic Subunit	7-44.00	Needles Valley
X-14.00	Chemehuevis Hydrologic Unit	7-43.00	Chemehuevis Valley
X-15.00	Colorado Hydrologic Unit	-	-
X-15.AO	Vidal Hydrologic Subunit	7-42.00 7-41.00	Vidal Valley Calzona Valley
X-15.BO	Big Wash Hydrologic Subunit	-	-
X-15.CO	Quien Sabe Hydrologic Subunit	7-40.00	Quien Sabe Point Valley
X-15.DO	Palo Verde Hydrologic Subunit	7-39.00 7-38.00	Palo Verde Mesa Valley Palo Verde Valley
X-15.EO	Arroyo Seco Hydrologic Subunit	7-37.00	Arroyo Seco Valley
X-16.00	Rice Hydrologic Unit	7- 4.00	Rice Valley
X-17.00	Chuckwalla Hydrologic Unit	-	
X-17.A0	Ford Hydrologic Subunit	7- 5.00	Chuckwalla Valley (Now only a portion of this area is utilized; the remainder is Palen Hydr logic Subunit, X-17.BO)

New Designation		<u>C</u>	Old Designation
Code	Hydrologic Unit, Hydrologic Subunit and <u>Hydrologic Subarea</u>	Code	Basin or Valley
X-17.BO	Palen Hydrologic Subunit	7- 5.00	Chuckwalla Valley (Now only a portion of this area is utilized; the remainder is Ford Hydro- logic Subunit, X-17.AO)
X-17.CO	Pinto Hydrologic Subunit	7- 6.00	Pinto Valley (Now only a portion of this area is utilized; the remainder is Pleasant Hydrologic Subunit, X-17.DO)
X-17.DO	Pleasant Hydrologic Subunit	7- 6.00	Pinto Valley (Now only a portion of this area is utilized; the remainder is Pinto Hydrologic Subunit, X-17.CO)
x-18.00	Hayfield Hydrologic Unit	7-31.00	Orcopia Valley (Now only a portion of this area is utilized; the remain- der is Shavers Hydro- logic Subunit, X-19.BO)
X-19.00	Whitewater Hydrologic Unit		-
X-19.A0	Morongo Hydrologic Subunit	7-20.00	Morongo Valley
X-19.BO	Shavers Hydrologic Subunit	7-31.00	Orcopia Valley (Now only a portion of this area is utilized; the remain- der is Hayfield Hydro- logic Unit, X-18.00)
x-19.C0	San Gorgonio Hydrologic Subunit	7-21.00	Coachella Valley (Now only a portion of this area is utilized; the remainder is Coachella Hydrologic Subunit, X-19.DO)

New	Designation	<u>c</u>	ld Designation
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
X-19.Cl	. Beaumont Hydrologic Subare	ea -	-
X-19.C2	San Gorgonio Hydrologic Subarea	-	-
X-19.DO	Coachella Hydrologic Subunit	7-21.00	Coachella Valley (Now only a portion of this area is utilized; the remainder is San Gorgonio Hydrologic Subunit, X-19.CO)
X -19 .DI	. Garnet Hill Hydrologic Subarea	-	
X-19.D2	Mission Creek Hydrologic Subarea	-	-
X-19.D3	3 Miracle Hill Hydrologic Subarea	-	-
X-19.D4	Sky Valley Hydrologic Subarea	-	-
X-19.D5	Fargo Canyon Hydrologic Subarea	-	
X-19.D6	5 Thousand Palms Hydrologic Subarea	-	-
X-19.D7	7 Indio Hydrologic Subarea	-	-
X-20.00	Clark Hydrologic Unit	7-23.00	Clark Valley
X-21.00	West Salton Sea Hydrologic Unit	7-22.00	West Salton Sea Valley
X-22.00	Anza-Borrego Hydrologic Unit	-	-

New	Designation	<u>(</u>	Old Designation
Н	ydrologic Unit, ydrologic Subunit and ydrologic Subarea	Code	Basin or Valley
X-22.A0	Borrego Hydrologic Subunit	-	-
X-22.Al	Terwilliger Hydrologic Subarea	7-26.00	Terwilliger Valley
X-22.A2	Collins Hydrologic Subarea	7-24.00	Borrego Valley (Now only a portion of this area is utilized; the remain- der is Borrego Hydro- logic Subarea, X-22.A3)
X-22.A3	Borrego Hydrologic Subarea	7-24.00	Borrego Valley (Now only a portion of this area is utilized; the remain- der is Collins Hydrologic Subarea, X-22.A2)
X-22.BO	Ocotillo-Lower San Felipe Hydrologic Subunit	7-25.00 7 - 30.00	Ocotillo Valley Portion of Imperial Valley
X-22.CO	Mescal Bajada Hydrologic Subunit	7-27.00	San Felipe Valley (Now only a portion of this area is utilized; the remainder is San Felipe Hydrologic Subunit, X-22.DO)
X-22.DO	San Felipe Hydrologic Subunit	7-27.00	San Felipe Valley (Now only a portion of this area is utilized; the remainder is Mescal Bajada Hydrologic Sub- unit, X-22.CO)
X-22.E0	Mason Hydrologic Subunit	-	-
X-22.FO	Vallecito-Carrizo Hydrologic Subunit	-	-

New Designation Old Designation Hydrologic Unit, Hydrologic Subunit and Code Hydrologic Subarea Code Basin or Valley 7-28.00 X-22.F1 Carrizo Hydrologic Vallecito-Carrizo Valle Subarea (Now only a portion of this area is utilized; the remainder is Vallecito Hydrologic Subares X-22.F2) X-22.F2 7-28.00 Vallecito-Carrizo Valle Vallecito Hydrologic Subarea (Now only a portion of this area is utilized; the remainder is Carri: Hydrologic Subarea, X-22.F1) X-22.F3 Canebrake Hydrologic 7-46.00 Canebrake Valley Subarea Jacumba Hydrologic X-22.GO Subunit X-22.G1 McCain Hydrologic Subarea X-22.G2 Jacumba Hydrologic 7-47.00 Jacumba Valley Subarea X-23.00 Imperial Hydrologic Unit X-23.A0 Imperial Hydrologic 7-30.00 Portion of Imperial Valley Subunit 7-33.00 Portion of East Salton Sea Valley Coyote Wells Valley X-23.BO Coyote Wells Hydrologic 7-29.00 Subunit X-24.00 Davies Hydrologic Unit

New Designation		<u>0</u>	Old Designation	
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley	
X-25.00	East Salton Sea Hydrologic Unit	7-32.00 7 - 33.00	Chocolate Valley Portion of East Salton Sea Valley	
X- 26.00	Amos-Ogilby Hydrologic Unit	7-34.00 7-35.00	Amos Valley Ogilby Valley	
X-27.00	Yuma Hydrologic Unit	7-36.00	Yuma Valley	

NAMES AND AREAL CODE NUMBERS SANTA ANA DRAINAGE PROVINCE (Y)

-

NAMES AND AREAL CODE NUMBERS SANTA ANA DRAINAGE PROVINCE*

New Designation	Old Designation
Hydrologic Unit, Hydrologic Subunit and Code Hydrologic Subarea	Code Basin or Valley
Y-01.00 Santa Ana River Hydrologi Unit	c
Y-O1.AO Lower Santa Ana River Hydrologic Subunit	· ·
Y-Ol.Al East Coastal Plain Hydrologic Subarea	8- 1.01 East Coastal Plain Pres- sure Area (Now only a portion of this area is utilized; the remainder is Anaheim Hydrologic Subarea, U-05.F1)
	 8- 1.02 Santa Ana Forebay Area (Now only a portion of this area is utilized; the remainder is Anaheim Hydrologic Subarea, U-05.Fl) 8- 1.03 Irvine Basin
	0- 1.03 Irvine Basin
Y-01.A2 Santiago Hydrologic Subarea	8- 1.07 Santiago Basin
Y-O1.A3 Santa Ana Narrows Hydrologic Subarea	8- 1.06 Santa Ana Narrows Basin
Y-Ol.BO Middle Santa Ana River Hydrologic Subunit	
Y-Ol.Bl Chino Hydrologic Subarea	8- 2.01 Chino Basin 4-14.01 Chino Basin

*Boundaries of hydrologic areas are shown on Plates 1 and 11.

5-1

New Designation

H	ydrologic Unit, ydrologic Subunit and ydrologic Subarea	Code	Basin or Valley
Y-01.B2	Harrison Hydrologic Subarea	4-14.02	Pomona Basin (Now only a portion of this area is utilized; the remainder is Pomona Hydrologic Subarea, U-05.E2)
Y-01.B3	Claremont Heights Hydrologic Subarea	8- 2.02 4-14.04	
Y-Ol.B4	Cucamonga Hydrologic Subarea	8- 2.03	Cucamonga Basin
Y-01.B5	Temescal Hydrologic Subarea	8- 2.17	Temescal Basin
Y-01.B6	Arlington Hydrologic Subarea	8- 2.16	Arlington Basin
Y-01.B7	Riverside Hydrologic Subarea	8- 2.15	Riverside Basin
Y-O1.CO	Lake Mathews Hydrologic Subunit	-	
Y-01.Cl	Coldwater Hydrologic Subarea	8- 2.19	Coldwater Basin
¥-01.C2	Bedford Hydrologic Subarea	8- 2.18	Bedford Basin
Y-01.C3	Cajalco Hydrologic Subarea	8- 3.00	Cajalco Valley

New I	Designation		Old Designation
Hy	drologic Unit, drologic Subunit and drologic Subarea	Code	Basin or Valley
Y-01.C4	Lee Lake Hydrologic Subarea	8- 2.20	Lee Lake Basin
Y-01.C5	Terra Cotta Hydrologic Subarea	-	-
Y-01.D0	Colton-Rialto Hydrologic Subunit	-	-
Y-Ol.Dl	Upper Lytle Hydrologic Subarea	-	-
Y-01.D2	Lower Lytle Hydrologic Subarea	-	
Y-01.D3	Upper Colton-Rialto Hydrologic Subarea	8- 2.04	Portion of Rialto Basin
Y-01.D4	Colton-Rialto Hydrologic Subarea	8- 2.05 8- 2.04	Colton Basin Portion of Rialto Basin
Y-01.D5	Reche Hydrologic Subarea	8- 2.14	Reche Canyon Basin
Y-01.E0	Upper Santa Ana Hydrologic Subunit	-	-
Y-OL.EL	Cajon Hydrologic Subarea	8- 2.08	Upper Cajon Basin
Y-01.E2	Bunker Hill Hydrologic Subarea		Lower Cajon Basin Devil Canyon Basin Portion of Bunker Hill Basin
Y-01.E3	Redlands Hydrologic Subarea	8- 2.06	Portion of Bunker Hill Basin
Y-01.E4	Mentone Hydrologic Subarea	8- 2.06	Portion of Bunker Hill Basin

New Designation

H	ydrologic Unit, ydrologic Subunit and ydrologic Subarea	Code	Basin or Valley
Y-01.E5	Reservoir Hydrologic Subarea	8- 2.06	Portion of Bunker Hill Basin
Y-01.E6	Crafton Hydrologic Subarea	8- 2.13	Portion of San Timoteo Basin
Y-01.E7	Santa Ana Canyon Hydrologic Subarea	8- 2.06	Portion of Bunker Hill Basin
Y-01.E8	Mill Creek Hydrologic Subarea	8- 2.06	Portion of Bunker Hill Basin
Y-01.E9	Sycamore Hydrologic Subarea	8- 2.07	Lytle Basin
Y-01.F0	San Timoteo Hydrologic Subunit	-	•
Y-Ol.Fl	Yucaipa Hydrologic Subarea	8- 2.13	Portion of San Timoteo Basin
Y-01.F2	San Timoteo Hydrologic Subarea	8- 2.13 8- 2.12	Portion of San Timoteo Basin Portion of Beaumont Basi
Y-01.F3	Cherry Valley	8- 2.11	Portion of Yucaipa Basin
	Hydrologic Subarea	8- 2.12	Portion of Beaumont Basi
¥-01.F4	Chicken Hill Hydrologic Subarea	8- 2.11	Portion of Yucaipa Basin
Y-01.F5	Gateway Hydrologic Subarea	8- 2.11	Portion of Yucaipa Basin
Y-01.F6	Oak Glen Hydrologic Subarea	8- 2.11	Portion of Yucaipa Basin
Y-01.F7	South Mesa Hydrologic Subarea	8- 2.11	Portion of Yucaipa Basin

New Design	nation		Old Designation
Hydrold	ogic Unit, ogic Subunit and ogic Subarea	Code	Basin or Valley
	iple Falls Creek Hydrologic Subarea	8- 2.11	Portion of Yucaipa Basin
	bie Creek Hydrologic Subarea	8- 2.12	Portion of Beaumont Basin
	Bernardino Mountain Irologic Subunit	-	
	ar Valley Hydrologic Subarea	8- 9.00	Portion of Bear Valley
	ven Oaks Hydrologic Subarea	8- 7.00 8- 8.00	
	ldwin Hydrologic Subarea	8- 9.00	Portion of Bear Valley
	cinto Valley Dlogic Unit	8- 5.00 8- 6.00	
Y-02.A0 Perr:	is Hydrologic Subunit	-	-
	rris Valley Hydrologic Subarea	-	-
	nifee Hydrologic Subarea	-	-
	nchester Hydrologic Subarea	-	-
	keview Hydrologic Subarea	-	-
•	net Hydrologic Subarea	-	-

New Designation

I	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Y-02.BO	San Jacinto Hydrologic Subunit	-	-
Y-02.B	San Jacinto Hydrologic Subarea	-	-
Y-02.B2	2 Hemet Lake Hydrologic Subarea	8- 6.00	Hemet Lake Valley
Y-02.B	Bautista Hydrologic Subarea	-	-
Y-02.CO	Elsinore Hydrologic Subunit	8- 4.00	Elsinore Valley
Y-02.C	L Elsinore Hydrologic Subarea	-	-
¥-02.C2	2 Railroad Hydrologic Subarea	-	-

NAMES AND AREAL CODE NUMBERS SAN DIEGO DRAINAGE PROVINCE (Z)

ATTACHMENT 6

NAMES AND AREAL CODE NUMBERS SAN DIEGO DRAINAGE PROVINCE*

New Designation

Old Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z-01.00	San Juan Hydrologic Unit	-	-
Z-01.A0	Laguna Hydrologic Subunit	-	-
Z-01.A1	San Joaquin Hydrologic Subarea	-	-
Z-01.A2	Laguna Hydrologic Subarea	-	-
Z- 01.A3	Aliso Hydrologic Subarea	9- 1.01	Aliso Creek Basin
Z-01.A4	Dana Point Hydrologic Subarea	-	-
Z-01.BO	San Juan Hydrologic Subunit	9- 1.02	San Juan Creek Basin
Z-01.CO	San Clemente Hydrologic Subunit	-	-
Z-01.D0	San Mateo Hydrologic Subunit	9- 2.00	San Mateo Way
Z-01.E0	San Onofre Hydrologic Subunit	-	-
Z-Ol.El	San Onofre Hydrologic Subarea	9- 3.00	San Onofre Valley
Z-01.E2	Las P ulgas Hydrologic Subarea	-	-
Z- 01.E3	Stuart Hydrologic Subarea	-	-
Z- 02.00	Santa Margarita Hydrologic Unit	-	-
Z-02.A0	Ysidora Hydrologic Subunit	9- 4.00	Santa Margarita Valley

*Boundaries of hydrologic areas are shown on Plates 1 and 12.

New Designation

Valley
sin (Now c of this are t; the remander tieta Hydro rea, Z-02.0
sin (Now c f this are ; the rema omar Hydrc 02.Cl)
f;ie sf;c

New Designation

	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
z-02.06		-	-
Z-02.D0	Auld Hydrologic Subunit	-	-
Z-02.Dl	Auld Hydrologic Subarea	-	-
Z-02.D2	Gertrudis Hydrologic Subarea	-	-
Z-02.D3	Lower Tucalota Hydrologic Subarea	-	-
Z-02.D4	Tucalota Hydrologic Subarea	-	-
Z-02.E0	Pechanga Hydrologic Subunit	-	-
Z-02.El	. Pauba Hydrologic Subarea	9- 5.02	Pauba Basin
Z-02.E2	Pechanga Hydrologic Subarea	9- 5.03	Wolf Basin (Pechanga)
Z-02.F0	Wilson Hydrologic Subunit	-	-
Z-02.F1	Lencaster Valley Hydrologic Subarea	-	-
Z-02.F2	Lewis Hydrologic Subarea	-	-
Z-02.F3	Wilson Hydrologic Subarea	-	-
Z-02.GO	Anza Hydrologic Subunit	-	-
Z-02.Gl	Lower Coahuila Hydrologic Subarea	-	-

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z-02.G2	Upper Coahuila Hydrologic Subarea	9- 6.00	Coahuila Valley (Now on a portion of this area utilized; the remainder Anza Hydrologic Subarea Z-02.C3)
Z-02.G3	Anza Hydrologic	9- 6.00	Coahuila Valley (Now on a portion of this area utilized; the remainder Upper Coahuila Hydrolog Subarea, Z-02.G2)
Z-02.G4	Burnt Hydrologic Subarea	-	-
Z-02.HO	Aguanga Hydrologic Subunit	-	-
Z-02.Hl	Vail Hydrologic Subarea	-	-
Z-02.H2	Devils Hole Hydrologic Subarea	-	-
Z-02.H3	Redec Hydrologic Subarea	-	-
Z-02.H4	Aguanga Hydrologic Subarea	-	
Z-02.IO	Oakgrove Hydrologic Subunit	-	-
Z-02.Il	Lower Culp Hydrologic Subarea	-	-
Z-02.12	Oakgrove Hydrologic Subarea	-	-
Z-02.I3	Dodge Hydrologic Subarea	-	-
Z-02.I4	Chihuahua Hydrologic Subarea	-	-

Ne	w Designation	Old Designation	
	Hydrologic Unit, Hydrologic Subunit and		
Code	Hydrologic Subarea	Code	Basin or Valley
Z-03.00	San Luis Rey Hydrologic Unit	-	-
Z-03.A0	Bonsall Hydrologic Subunit	-	-
Z-03.Al	Mission Hydrologic Subarea	9- 7.01	Mission Basin
Z-03.A2	Bonsall Hydrologic Subarea	9- 7.02	Bonsall Basin (Now only a portion of this area is utilized; the remainder is Pala Hydrologic Subarea, Z-03.Bl and Pauma Hydro- logic Subarea, Z-03.B2)
Z-03.A3	Moosa Hydrologic Subarea	-	-
Z-03.A4	Valley Center Hydrologic Subarea	-	-
Z-03.A5	Woods Hydrologic Subarea	-	-
Z -0 3.A6	Rincon Hydrologic Subarea	-	
Z-03.BO	Monserate Hydrologic Subunit	-	-
Z-03.Bl	Pala Hydrologic Subarea	9- 7.02	Bonsall Basin (Now only a portion of this area is utilized; the remainder is Bonsall Hydrologic Subarea, Z-03.A2 and Pauma Hydro- logic Subarea, Z-03.B2)
Z-03.B2	Pauma Hydrologic Subarea	9- 7.02	Bonsall Basin (Now only a portion of this area is utilized; the remainder is Bonsall Hydrologic Subarea, Z-03.A2 and Pala Hydro- logic Subarea, Z-03.B1)
Z-03.B3	San Luis Rey Hydrologic Subarea	-	-

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z-03.CO	Warner Hydrologic Subunit	9- 8.00	Warner Valley
Z-03.Cl	Warner Hydrologic Subarea	-	-
Z-03.C2	Combs Hydrologic Subarea	-	-
Z-04.00	Carlsbad Hydrologic Unit	-	-
Z-04.A0	Loma Alta Hydrologic Subunit	-	-
Z-04.BO	Vista Hydrologic Subunit	-	-
Z-04.Bl	Carlsbad Hydrologic Subarea	-	-
Z- 04.B2	Vista Hydrologic Subarea	-	-
Z-04.CO	Agua Hedionda Hydrologic Subunit	-	-
Z-04.Cl	Agua Hedionda Hydrologic Subarea	-	-
Z-04.C2	Buena Hydrologic Subarea	-	-
Z-04.D0	Encinas Hydrologic Subunit	-	-
Z-04.E0	San Marcos Hydrologic Subunit	-	-
Z-04.El	Batiquitos Hydrologic Subarea	-	-
Z-04.E2	San Marcos Hydrologic Subarea	-	-

New Designation		Old Designation		
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley	
Z-04.E3	Twin Oaks Hydrologic	-	-	
Z-04.F0	Escondido Hydrologic Subunit	-		
Z-04.Fl	San Elijo Hydrologic Subarea	-	-	
Z-04.F2	Escondido Hydrologic Subarea	9- 9.00	Escondido Valley	
Z-04.F3	Lake Wohlford Hydrologic Subarea	-	-	
Z- 05.00	San Dieguito Hydrologic Unit	-	-	
Z-05.A0	San Dieguito Hydrologic Subunit	-	•	
Z-05.Al	San Dieguito Hydrologic Subarea	9-12.01	San Dieguito Basin	
Z-05.A2	La Jolla Hydrologic Subarea	9-12.02	La Jolla Basin	
Z-05.BO	Hodges Hydrologic Subunit	-	-	
Z- 05.Bl	Hodges Hydrologic Subarea	9-10.01	Lake Hodges Basin	
Z- 05.B2	Green Hydrologic Subarea	9-10.04	Green Basin	
Z-05.B 3	Felicita Hydrologic Subarea	9-10.03	Felicita Basin	
Z- 05.B4	Bear Hydrologic Subarea	-	-	

New Designation		<u>01</u>	Old Designation	
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley	
Z-05.CO	San Pasqual Hydrologic Subunit	-	-	
Z-05.Cl	Highland Hydrologic Subarea	9-10.05	Highland Basin	
Z-05.C 2	San Pasqual Hydrologic Subarea	9-10.02	San Pasqual Basin	
Z-05.C3	Reed Hydrologic Subarea	-	-	
Z-05.C4	Hidden Hydrologic Subarea	-	-	
Z-05.C5	Guejito Hydrologic Subarea	-	-	
z- 05.C6	Vineyard Hydrologic Subarea	-	-	
Z-05.D0	Santa Maria Valley Hydrologic Subunit	-	-	
Z-05.D1	Ramona Hydrologic Subarea	9-11.01	Ramona Basin	
Z-05.D2	Lower Hatfield Hydrologic Subarea	9-11.02	Lower Hatfield Basin	
Z- 05.D3	Wash Hollow Hydrologic Subarea	9-11.03	Wash Hollow Basin	
Z- 05.D4	Upper Hatfield Hydrologic Subarea	9-11.04	Upper Hatfield Basin	
Z-05.D5	Ballena Hydrologic Subarea	9-11.06	Ballena Basin	
Z- 05.D6	East Santa Teresa Hydrologic Subarea	9-11.05	Santa Teresa Basin	
Z-05.D7	West Santa Teresa Hydrologic Subarea	-	-	

Ne	w Designation	Old Designation	
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z-05.E0	Santa Ysabel Hydrologic Subunit	-	-
Z- 05.El	Boden Hydrologic Subarea	-	-
Z-05.E2	Pamo Hydrologic Subarea	9-10.06	Pamo Basin
Z-05.E3	Sutherland Hydrologic Subarea	-	
Z-05.E4	Santa Ysabel Hydrologic Subarea	9-10.08	Santa Ysabel Basin
Z-06.00	Penasquito Hydrologic Unit	-	-
Z-06.A 0	Soledad Hydrologic Subunit	-	-
Z-06.B 0	Poway Hydrologic Subunit	9-13.00	Poway Valley
Z-06.CO	Scripps Hydrologic Subunit	-	-
Z-06.D0	Miramar Hydrologic Subunit	-	
Z-06.E 0	Tecolote Hydrologic Subunit	-	
Z-07.00	San Diego Hydrologic Unit	-	-
Z-07.A0	Lower San Diego Hydrologic Subunit	-	-
Z-07.Al	Mission San Diego Hydrologic Subarea	9-14.00	Mission Valley (Now only a portion of this area is utilized; the remain- der is Point Loma Hydro- logic Subunit, Z-08.A0)

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z-07.A2	Santee Hydrologic Subarea	9-15.00	San Diego River Valle
Z-07.A3	El Cajon Hydrologic Subarea	9-16.00	El Cajon Valley
Z-07.A4	Coches Hydrologic Subarea	-	-
Z-07.A5	El Monte Hydrologic Subarea	-	-
Z-07.BO	San Vicente Hydrologic Subunit	-	-
Z-07.Bl	San Vicente Hydrologic Subarea	-	-
Z- 07.B2	Kimball Hydrologic Subarea	-	-
Z-07. B3	Gower Hydrologic Subarea	-	-
Z- 07.B4	Barona Hydrologic Subarea	-	-
Z-07.CO	El Capitan Hydrologic Subunit	-	-
Z-07.Cl	El Capitan Hydrologic Subarea	- '	-
Z- 07.C2	Glen Oaks Hydrologic Subarea	-	-
Z- 07.C3	Alpine Hydrologic Subarea	-	-
Z-07.DO	Cuyamaca Hydrologic Subunit	-	-
Z- 07.Dl	Inaja Hydrologic Subarea	-	-

Ne	w Designation	Old Designation	
Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z- 07.D2	Spencer Hydrologic Subarea	-	-
Z-07.D3	Cuyamaca Hydrologic Subarea	-	-
z-08.00	Coronado Hydrologic Unit	-	-
z- 08.A0	Point Loma Hydrologic Subunit	9-14.00	Mission Valley (Now only a portion of this area is utilized; the remain- der is Mission San Diego Hydrologic Subarea, Z-07.A1)
Z-08.BO	San Diego Mesa Hydrologic Subunit	-	-
Z-08. Bl	Lindbergh Hydrologic Subarea	-	-
Z- 08.B2	Chollas Hydrologic Subarea	-	-
Z-08.C 0	Paradise Hydrologic Subunit	-	-
Z-08.Cl	El Toyan Hydrologic Subarea	-	-
z- 08. c 2	Paradise Hydrologic Subarea	-	-
Z-09.00	Sweetwater Hydrologic Unit	-	-
Z- 09.A0	Lower Sweetwater Hydrologic Subunit	-	-
Z-09.Al	Telegraph Hydrologic Subarea	~	-
Z- 09. A 2	Sweetwater Hydrologic Subarea	9-17.00	Sweetwater Valley

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z-09.B0	Middle Sweetwater Hydrologic Subunit	-	-
Z-09.Bl	Jamacha Hydrologic Subarea	-	-
Z-09.B2	Hillsdale Hydrologic Subarea	-	-
Z-09.B3	Dehesa Hydrologic Subarea	-	-
Z-09.B4	Galloway Hydrologic Subarea	-	-
Z - 09.B5	Sequan Hydrologic Subarea	-	-
Z-09.B6	Alpine Heights Hydrologic Subarea	-	-
Z-09.CO	Upper Sweetwater Hydrologic Subunit	-	-
Z-09.Cl	Loveland Hydrologic Subarea	-	-
Z-09.C2	Japatul Hydrologic Subarea	-	-
Z-09.C3	Viejas Hydrologic Subarea		-
Z-09.C4	Descanso Hydrologic Subarea	-	-
Z-09.C5	Garnet Hydrologic Subarea	-	-
Z-10.00	Otay Hydrologic Unit	-	-
Z-10.A0	Coronado Hydrologic Subunit	-	-

New Designation Old Designation Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea Code Code Basin or Valley Z-10.BO Otay Hydrologic 9-18.00 Otay Valley Subunit Z-10.CO Dulzura Hydrologic Subunit Z-10.C1 Savage Hydrologic Subarea Z-10.C2 Proctor Hydrologic Subarea Jamul Hydrologic 9-20.00 Jamul Valley Z-10.C3 Subarea Z-10.C4 Lee Hydrologic Subarea Z-10.C5 Lyon Hydrologic Subarea Z-10.C6 Dulzura Hydrologic Subarea Z-10.C7 Engineer Springs Hydrologic Subarea Tia Juana Hydrologic Unit Z-11.00 Tia Juana Hydrologic 9-19.00 Tia Juana Valley Z-11.A0 Subunit Z-11.A1 Tia Juana Hydrologic Subarea San Ysidro Hydrologic Z-11.A2 Subarea Z-11.BO Potrero Hydrologic Subunit Z-11.B1 Marron Hydrologic Subarea

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z- 11.B2	Bee Canyon Hydrologic Subarea	-	-
Z-11. B3	Barrett Hydrologic Subarea	-	-
Z-11. B4	Round Potrero Hydrologic Subarea	-	-
Z-11.B5	Potrero Hydrologic Subarea	-	-
Z-11.CO	Barrett Lake Hydrologic Subunit	-	-
Z-11.DO	Monument Hydrologic Subunit	-	-
Z-11.Dl	Pine Hydrologic Subarea	-	-
Z-11.D2	Monument Hydrologic Subarea	-	-
Z-11.E0	Morena Hydrologic Subunit	-	-
Z-11.FO	Cottonwood Hydrologic Subunit	-	-
Z-11.GO	Cameron Hydrologic Subunit	-	-
Z-11.HO	Campo Hydrologic Subunit	-	-
Z-11.H1	Tecate Hydrologic Subarea	-	-
Z-11. H2	Campo Hydrologic Subarea	-	-
Z-11.H3	Clover Flat Hydrologic Subarea	-	-

New Designation

Code	Hydrologic Unit, Hydrologic Subunit and Hydrologic Subarea	Code	Basin or Valley
Z-11.H4	Hill Hydrologic Subarea	-	-
Z-11.H5	Hipass Hydrologic Subarea	-	-

APPENDIX A

CLIMATE

TABLE OF CONTENTS

Page

PRECIPITATION AT SOUTHERN CALIFORNIA STATIONS

Drainage Province	
Central Coastal (T)	A- 1
Los Angeles (U)	A- 3
Lahontan (W)	A- 9
Colorado River Basin (X)	A-11
Santa Ana (Y)	A-13
San Diego (Z)	A-15

Agency Code

The agency code used in this report for precipitation data consists of four numerical characters for indicating the agency supplying the data. The complete agency code number, which is not used in this report, requires a fifth character to indicate the drainage province.

Agency Code for Central Coastal Drainage Province (T)

Agency Code

Agency Name

2100	Ventura County Flood Control District
4002	U. S. Army Corps of Engineers, Los Angeles
4004	U. S. Weather Bureau
4111	San Luis Obispo County Farm Agent

Agency Code for Los Angeles Drainage Province (U)

Agency Code	Agency Name						
1101	Los Angeles County Flood Control District						
2100	Ventura County Flood Control District						
4004	U. S. Weather Bureau						

Agency Code for Lahontan Drainage Province (W)

Agency Code	Agency Name						
1101 1200 4004	Los Angeles County Flood Control District Los Angeles Department of Water and Power U. S. Weather Bureau						
5100	San Bernardino County Flood Control District						

Agency Code for Colorado River Basin Drainage Province (X)

Agency Code	Agency Name
4004 4103	U. S. Weather Bureau Riverside County Flood Control and Water Conservation District

Agency Code for Santa Ana Drainage Province (Y)

Agency Code	Agency Name
1101 3102 3200	Los Angeles County Flood Control District Orange County Flood Control District San Bernardino Water Department
4004	U. S. Weather Bureau
4103	Riverside County Flood Control and Water Conservation District
4701	Corona Foothill Mutual Lemon Company
4706	Fontana Union Water Company
4730	Crafton Orange Growers Association
4731	Garrett and Company
4732	Gold Buckle Association
4740	Southern California Edison Company
5100	San Bernardino County Flood Control District
5717	Temescal Water Company

Agency Code for San Diego Drainage Province (Z)

Agency Code	Agency Name					
3102	Orange County Flood Control District					
4002	U. S. Army Corps of Engineers, Los Angeles					
4004	U. S. Weather Bureau					

LATITUDE	LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME
	CENTRAL	COASTAL	DRAINA	AGE PRO	VINCE (T)
	T-09	SALINAS	HYDRO	UNIT	
35-19-42 35-22-27 35-21-59 35-32-06 35-32-56 35-37-40 35-40-42	120-29-19 120-38-07 120-38-16 120-36-41 120-42-21 120-41-03 120-38-14	1,350 1,153 1,250 1,150 800 700 803	19.50 31.60 31.60 14.06 18.94 17.09 14.81	4004 4004 4111 4111 4004 4004	SALINAS DAM SANTA MARGARITA BOOSTER SANTA MARGARITA 2SW RUNITZ RANCH TEMPLETON PASO ROBLES PASO ROBLES AIRPORT
	T-10	SAN LUI	S OBISF	PO HYDR	O UNIT
35-17-51 35-20-16	120-39-45 120-41-17	300 625	24•80 22•98	4004 4004	SAN LUIS OBISPO POLY CAMP SAN LUIS OBISPO
	T-11	CARRIZO	PLAIN	HYDRO	UNIT
35-14-47	119-55-01	1,975	6.90	4111	SODA LAKE (WERLING)
	T-12	SANTA M	IARIA-CU	ЈУАМА Н	YDRO UNIT
34-54-13	120-26-56	238	11.71	4004	SANTA MARIA AIRPORT
34-54-36	120-11-08	3,248	17.09	4002	TEPUSQUET PEAK
34-56-18	119-37-27	2,240	4•49	4004	CUYAMA
	T-13	SAN ANT	ONIO HY	YDRO UN	IT
34-44-38 34-45-47	120-16-53 120-25-30	565 320	12.86 12.11	4004 4004	LOS A'LAMOS HARRIS GAGING STATION
	35-19-42 $35-22-27$ $35-21-59$ $35-32-06$ $35-32-56$ $35-37-40$ $35-40-42$ $35-17-51$ $35-20-16$ $35-14-47$ $34-54-13$ $34-54-13$ $34-54-18$ $34-56-18$ $34-56-18$	CENTRAL T-09 35-19-42 120-29-19 35-22-27 120-38-07 35-21-59 120-38-16 35-32-06 120-36-41 35-32-56 120-42-21 35-37-40 120-41-03 35-40-42 120-38-14 T-10 35-17-51 120-39-45 35-20-16 120-41-17 T-11 35-14-47 119-55-01 T-12 34-54-13 120-26-56 34-54-36 120-11-08 34-56-18 119-37-27 T-13 34-44-38 120-16-53	CENTRAL COASTAL T-09 SALINAS 35-19-42 120-29-19 1,350 35-22-27 120-38-07 1,153 35-21-59 120-38-16 1,250 35-32-06 120-36-41 1,150 35-32-56 120-42-21 800 35-37-40 120-41-03 700 35-40-42 120-38-14 803 T-10 SAN LUI 35-17-51 120-39-45 300 35-20-16 120-41-17 625 T-11 CARRIZC 35-14-47 119-55-01 1,975 T-12 SANTA M 34-54-13 120-26-56 238 34-54-36 120-11-08 3,248 34-56-18 119-37-27 2,240 T-13 SAN ANT 34-44-38 120-16-53 565	CENTRAL COASTAL DRAIN/ T-09 SALINAS HYDRO 35-19-42 120-29-19 1,350 19.50 35-22-27 120-38-07 1,153 31.60 35-21-59 120-38-16 1,250 31.60 35-32-06 120-36-41 1,150 14.06 35-32-56 120-42-21 800 18.94 35-37-40 120-41-03 700 17.09 35-40-42 120-38-14 803 14.81 T-10 SAN LUIS OBISF 35-17-51 120-39-45 300 24.80 35-20-16 120-41-17 625 22.98 T-11 CARRIZO PLAIN 35-14-47 119-55-01 1,975 6.90 T-12 SANTA MARIA-CU 34-54-13 120-26-56 238 11.71 34-54-36 120-11-08 3,248 17.09 34-56-18 119-37-27 2,240 4.49 T-13 SAN ANTONIO HY 34-44-38 120-16-53 565 12.86 <td>CENTRAL COASTAL DRAINAGE PRO T-09 SALINAS HYDRO UNIT 35-19-42 120-29-19 1,350 19.50 4004 35-22-27 120-38-07 1,153 31.60 4004 35-21-59 120-38-16 1,250 31.60 4004 35-32-06 120-38-16 1,250 31.60 4004 35-32-06 120-36-41 1,150 14.06 4111 35-32-06 120-42-21 800 18.94 4111 35-37-40 120-41-03 700 17.09 4004 35-40-42 120-38-14 803 14.81 4004 T-10 SAN LUIS OBISPO HYDR 35-20-16 120-41-17 625 22.98 4004 35-17-51 120-39-45 300 24.80 4004 35-20-16 35-17-51 120-39-45 300 24.80 4004 35-20-16 120-41-17 625 22.98 4004 35-14-47 119-55-01 1,975 6.90 4111</td>	CENTRAL COASTAL DRAINAGE PRO T-09 SALINAS HYDRO UNIT 35-19-42 120-29-19 1,350 19.50 4004 35-22-27 120-38-07 1,153 31.60 4004 35-21-59 120-38-16 1,250 31.60 4004 35-32-06 120-38-16 1,250 31.60 4004 35-32-06 120-36-41 1,150 14.06 4111 35-32-06 120-42-21 800 18.94 4111 35-37-40 120-41-03 700 17.09 4004 35-40-42 120-38-14 803 14.81 4004 T-10 SAN LUIS OBISPO HYDR 35-20-16 120-41-17 625 22.98 4004 35-17-51 120-39-45 300 24.80 4004 35-20-16 35-17-51 120-39-45 300 24.80 4004 35-20-16 120-41-17 625 22.98 4004 35-14-47 119-55-01 1,975 6.90 4111

A-1

						-							
HYDRO SUBUNIT	LAT	TITUDE	LON	IGITUDE	ELEV.	PI	RECIP.	AGENC	Y	STAT	ION	NAME	
				T-1/	4 SANT					īτ			
				1-11	+ SANT	~		TURO	UN	1			
T-14	• A	34-39-	42	120-28-3	32	72	11.1	19 4	004	LOMPOO	C SE	WAGE	PLAN
T-14	• D	34-35-	96	119-59-1	12 7	81	12•6	59 4	004	CACHUN	MA D	DAM	
T-14	• E	34-28-	57	119-30-3	32 2,0	60	18.4	8 4	004	JUNCAL	_ DA	M	
		34-31-	25	119-41-1	17 1,2	50	18.5	55 4	004	GIBRAL	TER	DAM	NO.
		34-31-	32	119-57-2	26 4,0	00	23.9	93 4	004	SANTA	BAR	RBARA	TV P
				T-15	5 SANT	A E	BARBAF	A HY	DRO	UNIT			
T-15	A	34-26-	57	120-28-1	15 1	10	11.7	71 4	002	POINT	CON	ICEPTI	ION
		34-31-		119-57-2					004			BARA	
T-15	C	34-25-	47	119-50-3	36	9	14•8	34 4	004	SANTA	BAF	BARA	AIRP
		34-25-4	48	119-42-0)5 1	00	15.7	73 4	004	SANTA	BAR	BARA	
		34-27-	54	119-42-3	30 1,0	00	23•8	30 2	100	DOULTO	DN T	UNNEL	-

IDRO						
UUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME
						J
		LOS ANG	ELES DRA	INAGE	PROVINC	CE (U)
		U-02	VENTURA	RIVER	HYDRO	UNIT
102•A	34-16-47	119-17-28	50	10.73	4004	VENTURA-STAR FREE PRESS
	34-20-35	119-17-43	215	13.51	2100	KINGSTON RES.
1	34-22-25	119-13-42	800	9.77	2100	CANADA LARGA-BARRETT RN.
02.B	34-22-06	119-20-12	400	17.28	2100	CASITAS RN.
	34-23-42	119-18-03	505	14.65	2100	OAKVIEW F.S.
	34-25-32	119-21-22	750	15.79	2100	SELBY RN. NO. 1
	34-25-51	119-18-53	650	15.33	2100	RANCHO MATILIJA
	34-28-55	119-17-30	875	16.93	4004	WHEELER SPRINGS 2SSW
02.C	34-24-44	119-10-08	2,570	15.08	2100	MEHER MT SULPHER MT . RD
	34-26-08	119-08-02	1,560	15.41	2100	RICHFIELD OIL LEASE
	34-26-09	119-11-36	1,250	14.07	2100	DENNISON RN.
	34-26-52	119-14-33	750	15.53	4004	IALO
	34-27-58	119-10-49	1,360	15•15	2100	THACHER SCHOOL
		U-03	SANTA C	LARA-CI		AS HYDRO UNIT
			JANTA C			
03•A	34-08-42	119-12-30	10	8.47	2100	PORT HUENEME
	34-09-26	119-04-39	20	6.01	2100	DAVIS RN.
	34-11-26	119-10-27	49	9.69	4004	OXNARD
	34-12-17 34-16-40	119-04-04	60	8.48	2100	AMER. CRYSTAL SUGAR SATICOY-DEL MAR
	34-16-47	119-12-10 119-15-27	300 200	11•77 11•88	2100 2100	O. BORGSTROM
•03•B	34-17-05	119-08-38	170	11 52	2100	SATICOY-CULBERTSON
03.0	34-19-55	119-07-25	335	11.53	2100	LIMONEIRA RN.
	34-21-16	119-03-50	265	12.08	4004	SANTA PAULA-VEN. CO. F.D.
	34-21-23	119-04-25	275	12.68	2100	BLANCHARD INV. CO.
	34-24-44	119-10-08	2,570	15.08	2100	MEHER MT SULPHER MT . RD
	34-26-08	119-08-02	1,560	15.41	2100	RICHFIELD OIL LEASE
03•C	34-21-54	118-56-42	400	11.52	2100	BARSDALE-YOUNG RN.
	34-22-27	119-00-50	400	12.68	2100	PINE TREE RN.
	34-23-03	118-57-41	430	12.71	2100	RANCHO SESPE
	34-23-54	118-55-06	450	14.99	2100	FILLMORE CITRUS ASSN.
	34-24-10	118-55-34	435	12.68	4004	FILLMORE IWNW
	34-35-50	119-19-30	4,150	13.60	4004	WHEELER SPRINGS 7N
03•D	34-23-42	118-51-06	600	11.56	2100	DOUBLE H-N RN.
	34-24-08	118-44-10	675	10.20	2100	NEWHALL RN.
	34-24-22	118-45-22	730	10.69	2100	CAMULOS RN. QTRS.
	34-24-39	118-47-37	700	10.77	2100	PIRU CITRUS ASSN.
	34-44-37	118-42-43	4,025	8.33	4004	SANDBERGS QUAIL LAKE P.S.

			1			
HYDRO SUBUNIT	LATITUDE	LONGITUDE	EL.EV.	PRECIP	AGENCY	STATION NAME
		U-03	SANTA C	LARA-CAL	LEGUAS	5 HYDRO UNIT (CONTD.)
U-03•E	34-20-18	118-36-44	3,340	14.68	1101	SANTA SUSANNA MT DEV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34-21-18	118-27-02	3,175	13.87	1101	WILSON CN.
	34-21-24	118-39-42	2,850	14.29	1101	SANTA SUSANNA MT SAL
	34-22-46	118-09-03	5,600	10.19	1101	LITTLE GLEASON
	34-23-07	118-31-54	1,243	9.78	4004	NEWHALL-SOLEDAD DIV.
	34-23-27	118-04-50	4,950	9.16	1101	TUJUNGA-MILL CR. SUMMI
	34-23-45	118-17-12	4,450	11.76	1101	MAGIC MTN.
	34-25-21	118-34-26	1,096	7.71	1101	SAUGUS-EDISON SUBSTAT
	34-26-36	118-04-00	4,500	9.79	1101	SANTIAGO CN.
	34-27-02	118-11-52	2,550	5.37	1101	ACTON-CAMP NO. 2
	34-27-51	118-09-25	2,900	5.66	1101	ACTON-ALISO CNBLUM
	34-28-55	118-31-32	1,511	7.67	1101	DRY CANYON RES.
	34-29-17	118-08-29	3,135	4.52	4004	VINCENT P. S.
	34-29-31	118-16-30	2,920	5.33	4004	ACTON-ESCONDIDO CN.
	34-30-47	118-21-31	2,350	6.68	1101	MINT CNTHE OAKS
	34-30-50	118-14-10	3,250	6.65	1101	ACTON-HUBBARD
	34-32-02	118-31-27	1,580	10.06	1101	SAN FRANCISQUITO CN.
	34-35-14	118-21-45	3,050	8.90	4004	BOUQUET CN.
	34-35-20	118-27-10	2,100	9.81	4004	SAUGUS P.P.
	34-36-28	118-33-40	2,075	11.68	4004	ELIZABETH LAKE CN.
	34-40-27	118-25-49	3,275	8.14	4004	PINE CN. P.S.
U-03.F	34-10-43	118-50-59	810	9.73	4004	THOUSAND OAKS
	34-11-46	118-56-05	850	8.50	2100	NEWBURY PARK ACADEMY
	34-14-10	118-56-01	275	7.83	2100	SANTA ROSA VALLEY-JAN.
	34-14-52	118-50-26	730	8.63	2100	EVERETT RN.
	34-15-44	118-39-32	1,075	9.16	4004	SUSANNA KNOLLS
	34-15-47	118-59-46	300	8.70	2100	SOMIS-SNYDER RN.
	34-16-08	119-02-04	375	12.70	2100	SOMIS-AGGEN RN.
	34-16-42	118-52-34	520	8.94	4004	MOORPARK ISSE
	34-17-45	118-52-34	720	9.41	2100	VEN. CO. W.W. DIST. 1
	34-17-53	118-43-16	1,080	9.93	2100	TAPO (MUTUAL VALLEY)
	34-18-58	118-53-36	851	10.35	2100	KERR BROS.
		U-04		HYDRO UN	IT	
		0-04	MALIBU	HIUKU UI	111	
U-04•A	34-05-03	118-35-57	747	14.66	4004	TOPANGA CN. R.S.
U-04•B	34-06-20	118-47-30	975	16.23	1101	SEMINOLE HOT SPRINGS
U-04.D	34-04-38	118-52-47	1,530	15.54	4004	LECHUZA P.S.

HYDRO	LATITUDE	LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME
	<u> </u>					
		U-05	L. AS	AN GABR	IEL RIV	ER HYDRO UNIT
-05•A	33-43-15	118-16-17	85	8.01	4004	SAN PEDRO
	33-44-33	118-24-31	150	7.65	1101	PT. VICENTE L. H.
	33-46-06	118-11-28	150	10.08	1101	LONG BEACH LOS ALAMITOS L
	33-46-10	118-11-37	68	10.45	1101	LONG BEACH VETS MEMORIAL
	33-46-30	118-22-58	1,240	11.79	1101	SAN PEDRO HILLS
	33-46-46	118-08-36	15	9.77	1101	LONG BEACH 10TH-ROSWELL
	33-47-16	118-12-08	11	9.37	1101	LONG BEACH-CITY AUTOMATIC
	33-47-27	118-15-30	40	10.03	1101	WILMINGTON-CITY ENGR.
	33-47-31	118-10-13	40	8.48	1101	LONG BEACH-HAMILTON BOWL
	33-47-49	118-10-03	140	9.70	4004	SIGNAL HILL-CITY HALL
	33-47-58	118-23-29	216	11.12	4004	PALOS VERDES ESTATES
	33-48-38	118-04-38	23	8.88	1101	LOS ALAMITOS
	33-49-52	118-19-41	85	10.64	4004	TORRANCE
	33-50-00	118-10-12	80	9.93	1101	LONG BEACH-KEEVER AVE.
	33-50-23	118-23-22	90	8.94	1101	REDONDO BEACH
	33-50-35	118-07-09	47	8.98	1101	LAKEWOOD-MONTANA RN.
	33-51-48	118-04-58	52	9.05	1101	ARTESIA- BARR LUMBER CO.
	33-52-07	118-19-55	65	10.01	1101	LA FRESA SUBSTATION
	33-52-20	118-11-55	55	10.00	1101	LONG BEACH-NEECE ST.
	33-52-44	118-07-31	68	9.15	1101	BELLFLOWER-MC CLURG
	33-53-00	118-23-19	182	10.05	1101	MANHATTAN BEACH
	33-53-13	118-00-56	86	8.75	1101	LA MIRADA-STANDARD OIL
	33-53-30	118-09-36	70	9.48	1101	PARAMOUNT F.S.
	33-53-42	118-13-34	68	10.08	1101	COMPTON F.S.
	33-53-52	118-04-00	85	8.76	1101	NORWALK C. OF C.
	33-54-57	118-25-50	150	9.28	1101	EL SEGUNDO-STANDARD OIL
	33-55-18	118-09-44	90	8.83	1101	RANCHO LOS AMIGOS
	33-56-18	118-08-03	130	9.59	4004	DOWNEY F.D.
	33-56-56	118-15-17	121	10.02	1101	L. A96TH-CENTRAL
	33-57-12	117-59-56	301	8.80	1101	EAST WHITTIER
	33-57-54		155	9.81	1101	INGLEWOOD F.S.
		118-21-15			4004	WHITTIER
	33-58-27	118-01-57	340	9.69		HUNTINGTON PARK CITY YARD
	33-58-33	118-12-25	147	9.29	1101	
	33-58-37	118-08-48	140	9.15	1101 1101	LAGUNA BELL-S.C.E. CO. VENICE F.S.
	33-59-21	118-27-15	55	8.63		
	34-00-43	118-29-27	94	9.62	4004	SANTA MONICA
	34-01-00	118-23-17	75	9.22	4004	CULVER CITY
	34-02-00	118-18-46	203	9.53	1101	CLARK MEM. LIBRARY
	34-02-42	118-27-08	232	10.66	1101	SAWTELLE-WEST L.A.
	34-03-08	118-14-46	385	9.46	1101	L. A. W. D2ND-HILL
	34-03-09	118-14-13	300	9.43	1101	L. A. W. DDUCOMMON ST.
	34-03-19	118-14-26	548	8.38	4004	L. A. FEDERAL BLDG.
	34-03-19	118-27-22	355	9.55	1101	SAWTELLE-SOLDIERS HOME
	34-03-34	118-33-25	700	10.42	1101	SA. YNEZ CNPASEO MIRAMA
	34-03-50	118-21-29	175	9.67	1101	HANCOCK PARK
					1101	HEV. HILLS (ITV HALL
	34-04-27	118-23-57	290	9.91		BEV. HILLS CITY HALL
	34-04-27 34-05-10	118-28-57	1,025	12.70	1101	MT. ST. MARYS COLLEGE
	34-04-27					

[1					r
HYDRO SUBUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME
		U-05 I	-• A•-SA	AN GABRI	IEL RIV	(CONTD.)
U-05•A	34-05-28	118-19-30	305	10.08	1101	HOLLYWOOD CITY ENGR.
	34-06-21	118-27-13	865	12.12	1101	STONE CN. RES.
	34-07-04	118-19-55	750	10.12	1101	HOLLYWOOD DAM
	34-07-06	118-10-39	620	9.67	1101	HIGHLAND PARK-LINDSAY
	34-07-14	118-24-38	867	10.93	1101	UPPER FRANKLIN RES.
	34-07-38	118-30-03	1,625	10.71	1101	MANDEVILLE CNFIRE RD
U-05•8	34-06-08	118-15-54	455	9.30	1101	SILVER LAKE RES.
	34-07-18	118-17-04	257	10.53	1101	GRIFFITH PARK NURSERY
	34-07-32	118-16-58	900	9.44	1101	GRIFFITH PARK LITTLE C.
	34-07-45	118-24-20	1,100	10.73	1101	FRANKLIN CN. MULHOLLAN
	34-07-51	118-29-26	1,425	11.42	1101	SEPULVEDA CNMULHLD D
	34-07-52	118-28-42	1,325	10.76	1101	MULHOLLAND-SEPULVEDA
	34-08-02	118-17-18	650	10.44	1101	GRIFFITH PARK ZOO
	34-09-00	118-14-27	603	9.49	1101	GLENDALE-MC INTYRE
	34-09-02	118-10-57	950	10.75	1101	EAGLE ROCK SUBSTATION
	34-09-07	118-15-40	530	9.97	4004	GLENDALE-STAPENHORST
	34-09-21	118-18-20	470	9.54	1101	L. A. HEADWORKS PLANT
	34-09-23	118-21-56	593	10.38	1101	NO. HOLLYWOOD-BLIX
	34-09-24	118-38-14	924	12.17	1101	CALABASAS-FARMER NO. 2
	34-09-54	118-15-05	615	9.29	1101	GLENDALE-JONES NO. 1
	34-10-02	118-28-06	680	9.44	4004	SEPULVEDA DAM
	34-10-16	118-35-56	891	9.93	1101	GIRARD-BRANT RN.
	34-10-55	118-08-15	1,125	12.61	4004	ALTADENA
	34-10-55	118-18-24	635	9.72	4004	BURBANK F.S.
	34-11-22	118-39-30	945	9.83	1101	BELL CNDRY GULCH RN.
	34-11-39	118-23-17	717	8.89	1101	LANKERSHIM P.P.
	34-12-18	118-17-05	1,610	11.49	1101	SUNSET DAM
	34-13-15	118-13-45	1,600	14.82	1101	PICKENS DEBRIS BASIN
	34-13-28	118-14-24	1,565	14.55	4004	LA CRESCENTA
	34-13-34	118-36-58	865	9.92	1101	CHATSWORTH RES.
	34-13-52	118-28-04	828	9.89	1101	LINDOMAR NURSERY
	34-14-20 34-15-21	118-13-28	2,225	16•04 9•89	1101 1101	BRIGGS TERRACE PACOIMA-WAREHOUSE
	34-15-21	118-24-24 118-36-19	955 95 7	9•89 10•76	4004	CHATSWORTH-LACFCD NO.
	34-15-43	118-23-50	1,110	10.65	4004	HANSEN DAM
	34-15-50	118-16-13	2,450	12.40	4004	HAINES CNLOWER
	34-16-18	118-15-07	3,450	14.60	4004	HAINES CN. UPPER
	34-16-40	118-28-06	977	10.55	4004	SAN FERNANDO
	34-16-58	118-30-46	1,150	11.07	1101	GRANADA PUMP PLANT
	34-17-18	118-28-54	1,150	11.94	1101	VAN NORMAN LAKE
	34-17-31	118-11-15	2,315	14.06	4004	BIG TUJUNGA DAM
	34-18-02	118-06-39	3,675	13.59	4004	COLBYS
	34-18-40	118-28-20	1,250	11.13	1101	SYLMAR PACKING CORP.
	34-19-48	118-23-59	1,500	12.00	4004	PACOIMA DAM
	34-20-18	118-36-44	3,340	14.68	1101	SA. SUSANNA MTDEVILS
	34-21-18	118-27-02	3,175	13.87	1101	WILSON CN.
	34-22-44	118-01-53	6,925	10.69	1101	PACIFIC MTN.
	34-22-46	118-09-03	5,600	10.19	1101	LITTLE GLEASON
	34-23-27	118-04-50	4,950	9.16	1101	TUJUNGA-MILL CR. SUMMI

HYDRO SUBUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP.	AGENCY	STATION NAME
		U-05	L. ASA	N GABRI	EL RIV	ER HYDRO UNIT (CONTD.)
-05•C	34-07-41	118-06-40	670	10.03	1101	SAN MARINO-HUNTGTN LIBRARY
	34-08-14	118-07-25	795	10.66	1101	PASADENA-CAL. TECH.
	34-08-47	118-04-03	635	10.90	1101	EAST PASADENA
	34-08-54	118-08-36	864	10.18		PASADENA
	34-09-27	118-02-36	665	11.84	1101	SIERRA MADRE-PEGLER
	34-09-31	118-02-01	611	11.61	1101	ARCADIA P.P. NO. 1
	34-09-47	118-02-21	700	12.15	1101	SIERRA MADRE P.P.
	34-09-48	118-10-53	1,120	11.25	1101	EL MIRADOR RN.
	34-10-11	118-02-51	985	13.95	1101	SIERRA MADRE-MIRA MONTE
	34-10-25	118-03-38	1,180	13.85	1101	BAILEY DEBRIS DAM
	34-10-34	118-02-32	1,100	14.03	1101	SIERRA MADRE DAM
	34-10-48	118-07-01	1,186	12.54		ALTADENA GOLF COURSE
	34-10-57	118-11-47	1,345	11.30		FLINTRIDG F.S.
	34-11-03	118-01-09	1,400	13.70	1101	SANTA ANITA DAM NO. 2
	34-11-36	118-05-18	2,550	14.97		HENNINGER FLATS
	34-11-52	118-11-05	1,155	11.82	1101	ARROYO SECO PATROL
	34-12-10	118-12-40	1,300	12.22		DESCANSO GARDENS
	34-12-12	118-11-40	1,270	12.84		LA CANADA-ROBERTS
	34-12-27	118-10-00	1,181	13.42	1101	ARROYO SECO-CHLORINE PLANT
	34-12-32	118-02-02	2,650			HOGEES CAMP IVY
	34-12-33	118-10-12	1,220		4004	ARROYO SECO R.S.
	34-13-37	118-06-33	4,500	19.78		MT. LOWE
	34-13-40	118-12-42	2,020	14.87	1101	ALTA CANYADA-CARPENTER
	34-14-40	118-10-50	1,800	10.84		OAK WILDE-PHILLIPS
-05.D	33-59-40	117-59-37	860	10.31	1101	PUENTE HILLS
	34-00-12	117-52-14	488			WALNUT P.S.
	34-00-12	117-56-19	380	10.15		PUENTE-BIXBY RN.
	34-00-13	117-51-09	533	8.88		WALNUT FRUIT GROWER ASSOC.
	34-00-26	117-59-42	575	10.01		NO.WHITTIER-COLE RN.
	34-02-35	118-04-50	285	9.23		POTRERO HEIGHTS
	34-03-52	117-57-04	358	10.25		WEST COVINA-HURST RN
	34-04-57	117-52-28	575			COVINA-TEMPLE
	34-05-36	117-57-40	386		1101	BALDWIN PARK EXPER. STA.
	34-06-05	118-07-52	533	10.44	1101	ALHAMBRA
	34-06-11	118-05-56	400		4004	SAN GABRIEL F.D.
	34-06-18	118-06-32	472	9.80	1101	SAN GABRIEL-BRUINGTON 2
	34-06-26	117-48-19	960			SAN DIMAS F.S.
	34-06-58	118-09-05	690	10.38		SO. PASADENA-CITY HALL
	34-07-39	117-47-42	1,110	11.19		SAN DIMAS-STEVENS
	34-07-57	117-53-32	615	10.62		AZUSA-FOOTHILL RN.
	34-08-03	117-54-17	610			AZUSA
	34-08-22	117-51-54	782	11.33		GLENDORA-M.C. IRRIG. CO.
	34-08-23	117-51-33	822			GLENDORA-WEST
	34-08-50	117-52-01	835	12.57		GLENDORA-BROWN
	34-08-57	118-00-04	560	12.43		MONROVIA NEWS-POST
	34-09-05	117-46-28	1,350	12.92		SAN DIMAS DAM
	34-09-20	117-54-28	750			SAN GABRIEL CN. P.H.
	34-09-22	117-50-57	1,165	13.41		GLENDORA-ENGLEHART
			1 . 1 0 2			

HYDRO SUBUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP.	AGENCY	STATION NAME
		U-05	L. AS	SAN GABR	RIEL RI	VER HYDRO UNIT (CONTD.)
U-05.D	34-09-46	117-54-15	770	13.07	1101	ROGERS CN.
	34-09-58	117-59-37	962	13.74	1101	MONROVIA-5 POINTS
	34-10-04	117-46-02	1,485	14.19	1101	SAN DIMAS R.S.
	34-10-06	117-48-36	1,575	14.82	4004	BIG DALTON DAM
	34-10-34	117-59-14	1,378	14.47	1101	SAWPIT DAM NO. 2
	34-10-53	117-52-43	1,210	13.65	1101	MORRIS DAM NO. 2
	34-11-38	117-57-52	2,725	17.57	1101	SAWPIT CNDEER PARK
	34-12-19	117-51-40	1,481	14.05	4004	SAN GABRIEL DAM NO.1
	34-12-20	117-45-40	2,750	13.89	1101	TANBARK FLATS
	34-13-27	118-03-32	5,650	18.90	1101	MT. WILSON OBSERVATOR
	34-13-33	117-50-48	1,500	12.58	1101	SAN GABRIEL DAM 1 CAMP
	34-13-36	118-03-57	5,709	17.05	4004	MT. WILSON
	34-13-51	118-02-19	3,325	21.22	1101	STURTEVANT CAMP
	34-14-10	117-48-18	1,600	12.21	1101	SAN GAB. CNE. FORK
	34-14-20	117-51-36	1,530	12.07	1101	CAMP RINCON-MASON
	34-18-58	117-50-30	5,370	16•24	4004	CRYSTAL LAKE
	34-20-23	117-56-21	7,925	13.94	1101	WATERMAN MTN.
	34-21-18	117-52-32	6,665	11.71	1101	CEDAR SPRINGS-PRISON
	34-22-26	117-45-05	6,600	12.80	1101	VINCENT GULCH
U-05•E	34-03-17	117-45-02	880	9.78	1101	POMONA F.S.
	34-03-58	117-46-21	858	9.67	4004	POMONA
	34-05-30	117-48-22	1,030	9.62	1101	PUDDINGSTONE DAM
	34-06-03	117-46-12	1,050	9.59	1101	LA VERNE POLICE DEPT.
	34-06-42	117-43-54	1,250	10.35	4004	LIVE OAK CN. ELDER NO.
	34-07-22	117-43-11	1,403	10.35	1101	CLAREMONT-INDIAN HILLS
	34-08-54	117-41-52	1,810	14.86	1101	PADUA HILLS P.S.
U-05.F	33-48-38	118-04-38	23	8.88	1101	LOS ALAMITOS
	33-51-33	117-53-06	190	7.30	3102	PLACENTIA-A. U. WATER
	33-51-57	117-59-50	75	7.69	1101	BUENA PARK
	33-52-15	117-54-24	195	9.64	3102	FULLERTON-KNOWLTON
	33-52-42	117-52-24	225	8.50	3102	PLACENTIA MUTUAL ORANG
	33-53-17	117-49-03	395	7.94	4004	YORBA LINDA
	33-53-25	117-55-31	275	8.52	4004	BREA DAM
	33-55-46	117-54-53	375	8.83	1101	BREA-UNION OIL
	33-55-58	117-56-38	315	9.83	3102	LA HABRA F.S.
	33-57-08	117-55-26	645	10.36	1101	PUENTE HILLS-WESSEL RM
	33-58-41	117-49-58	748	9.93	1101	DIAMOND BAR RN.

		LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME
		L			L	J
		LAHONI	TAN DRAI	NAGE PR	ROVINCE	(W)
		W-01	MONO HY	DRO UNI	т	
• 0	37-45-07	119-08-36	9,120	21.81	1200	GEM LAKE
	37-53-32	119-05-45		15.65	1200	CAIN RN.
	37-56-10	119-13-56	9,500	30.32	1200	ELLERY LAKE
		W-03	OWENS H	IYDRO UN	IT	
• 8	37-03-10	118-13-40	3,850	9.06	1200	TINEMAHA RES
	37-07-31	118-25-58	8,200	22.20	1200	BIG PINE CRGLACIER LODO
	37-08-31	118-19-22	4,670	11.54	1200	BIG PINE P.P. NO. 3
	37-10-32	118-33-37	9,600 9,140	25.69	4004	SOUTH LAKE LAKE SABRINA
	37-12-48 37-22-17	118-36-48 118-21-56	4,108	21•66 6•10	1200 4004	BISHOP AIRPORT
	37-28-12	118-43-24	9,360	20.85	1200	ROCK CR. STORE
	37-35-15	118-42-16	6,790	13.36	1200	LONG VALLEY RES.
•C	36-08-18	117-57-20	3,825	7.18	4004	HAIWEE RES.
	36-25-09	118-02-15	3,710	7.54	1200	COTTONWOOD GATES
	36-36-01	118-03-38	3,720	5.13	1200	LONE PINE
	36-40-15	118-05-40	3,725	6.01	1200	L.A.AALABAMA HILLS
	36-48-05	118-12-08	3,950	8.66 9.44	4004 1200	INDEPENDENCE L.A.AINTAKE
	36-58-31 37-03-10	118-12-31 118-13-40	3,825 3,850	9.44	1200	TINEMAHA RES.
		W-05	DEEP SP	RINGS +	IYDRO UI	NIT
• 0	37-22-15	117-59-03	5,225	5.22	4004	DEEP SPRINGS SCHOOL
• 0	37-22-15	117-59-03	29222	2022	4004	DEEP SPRINGS SCHOOL
		W-21	SEARLES	HYDRO	UNIT	
• A	35-45-42	117-22-27	1,695	1.61	4004	TRONA
		W-24	INDIAN	WELLS H	IYDRO UI	NIT
• A	35-57-07	117-55-31	3,510	3.71	1200	LITTLE LAKE
• A • B	35-57-07 35-35-40	117-55-31 117-55-04	3,510 3,310	3.71	1200	LITTLE LAKE

A-9

			T			
HYDRO SUBUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP.	AGENCY	STATION NAME
		W-26	ANTELOP	E HYDRO	UNIT	
W-26•A	34-20-23	117-56-21	7,925	13.94	1101	WATERMAN MTN.
	34-20-50	117-49-57	7,590	20.64	1101	LITTLE JIMMY SPRINGS
	34-21-31	117-37-59	5,975	9.14	5100	WRIGHTWOOD F.D.
	34-22-26	117-45-05	6,600	12.80	1101	VINCENT GULCH
	34-22-44	118-01-53	6,925	10.69	1101	PACIFIC MTN.
	34-22-45	117-41-20	6,860	9.82	4004	BIG PINES PARK
	34-22-53	117-41-05	7,500	6.95	4004	TABLE MTN.
	34-23-53	117-43-40	6,150	6.24	1101	JACKSON LAKE-BIG PINE
	34-25-02	117-58-17	3,925	7.66	1101	LITTLE ROCK-SYCAMORE
	34-26-36	118-04-00	4,500	9.79	1101	SANTIAGO CN.
	34-26-44	117-51-02	3,715	5.31	1101	VALYERMO R.S.
		117-55-58	3,996	5.43	1101	
	34-27-35 34-28-05		3,990		1101	PLEASANT VIEW MESA-NE
	34-30-18	117-44-51	3,035	3•50 3•45		LLANO-SHAWNEE HILLS F
		118-01-40	2,805		1101	LITTLE ROCK CREEK
	34-32-07	117-58-30		2.63	1101	CALIVALI FARMS
	34-32-14	118-03-48	2,825	3.39	1101	PALMDALE-CIRCLE C
	34-34-25	118-06-45 118-10-58	2,662	3.52	1101 1101	PALMDALE-CO. MAINT.
	34-34-42		2,950	4.99		ANAVERDE VALLEY-PLAT
	34-36-59	118-05-02	2,536	2.15	4004	PALMDALE AIRPORT
	34-37-12	118-17-08	3,200	8.11	1101	LEONIS VALLEY-RITTER
	34-37-23	118-13-57	2,900	4.35	1101	BELLEVIEW-STRATMAN
	34-39-02 34-40-46	117-50-55	2,680	2.90	1101	PIUTE BUTTE-MUSEUM
		117-57-06	2,442	2.58	1101	LANCASTER-WILEY RN.
	34-42-01 34-42-12	118-07-45	2,360	2.39	4004	LANCASTER
	34-42-12 34-42-15	118-18-32 118-25-40	2,450 3,050	3•49 7•01	1101 4004	ANTELOPE VALLEY FIELD
	34-42-50	118-21-15	2,600	3.85	1101	MUNZ VALLEY RN.
	34-43-15		2,800	3.05 8.57	1101	SAWMILL MIN. RN.
	34-44-15	118-35-00				
		118-27-20	2,865	5.35	1101	FAIRMONT-BARNES
	34-44-37	118-42-43	4,025	8.33	1101	SANDBERGS P.S.
	34-44-47	118-43-29	4,517	5.56	4004	SANDBERGS AIRWAYS STA
	34-47-00	118-36-30	3,000	5.65	1200	NEENACH
	35-02-49	118-09-58	2,735	2.11	4004	MOJAVE
	35-04-07	118-10-29	2,850	2.55	1200	MOJAVE
		W-28	MOJAVE	HYDRO U	NIT	
W-28•A	34-21-31	117-37-59	5,975	9.14	5100	WRIGHTWOOD F.D.
W-28.B	34-14-19	117-14-06	5,723	18.83	4004	SQUIRREL INN NO. 2
	34-15-06	117-11-30	5,250	17.35	4004	LAKE ARROWHEAD
	34-25-23	117-18-11	3,200	3.47	5100	HESPERIA
	34-31-57	117-18-12	2,900	2.23	4004	VICTORVILLE P.P.
W-28.E	34-54-03	117-01-17	2,142	0.96	4004	BARSTOW
W-28.H	35-23-18	116-06-46	1,045	2.01	4004	BAKER 9NNW
			4.30			

DRO		LONGITUDE	EL EV	DOFCID	AGE 1101	
UNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME
		COLORADO RI	VER BAS	IN DRAI	NAGE P	ROVINCE (X)
		X-05	EMERSO	N HYDRC	UNIT	
05•0	34-09-44	116-32-25	4,300	2 • 8 4	4004	KEE RANCH
		X-09	DALE H	YDRO UN	IΤ	
09•A	34-08-03	3 116-03-12	1,990	1•68	4004	29 PALMS
		X-12	WARD H	YDRO UN	IT	
12.0	34-08-44	115-07-16	922	2.33	4004	IRON MTN.
		X-13	PIUTE	HYDRO L	тин	
13•C	34-45-48	3 114-37-08	913	1.55	4004	NEEDLES AIRPORT
		X-15	COLORA	DO HYDR	O UNIT	
15.D	33-36-50	4 114-35-45 0 114-35-54 1 14-42-50	268	1.83		BLYTHE BLYTHE F.S. BLYTHE AIRPORT
		X-17	CHUCKW	ALLA HY	DRO UN	IT
17•B	33-48-31	1 115-27-01	973	1.85	4004	EAGLE MTN.
		X-18	HAYFIE	LD HYDR	O UNIT	
18.0	33-42-18	3 115-37-44	1,370	1.56	4004	HAYFIELD P.P.
		X-19	WHITEW	ATER HY	DRO UN	ΙT
19•A	34-03-19	9 116-34-31	2,580	3.35	4004	MORONGO VALLEY
·19•C	33-51-58 33-55-01 33-55-48	3 116-46-56	1,815	7.54	4004	CABAZON

A-11

HYDRO SUBUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP.	AGENCY	STATION NAME
		X-19	WHITEWA	ATER HY	DRO UN	IT (CONTD.)
X-19•D	33-29-37		-170	1.50	4103	OASIS
	33-34-13 33-38-04		-190 -120	1•52 1•48	4103 4004	MECCA STATE FOREST
	33-38-05		-118	1.61	4103	THERMAL AIRPORT (F
	33-40-11		90	2.07	4103	LA QUINTA F.S.
	33-42-48		-8	1.21	4103	INDIO STATE FOREST
	33-43-21 33-43-37		263 -20	2•05 1•47	4103 4004	PALM DESERT INDIO-U.S. DATE GA
	33-46-56		300	2.82	4103	
	33-49-01		411	2.68	4004	PALM SPRINGS
		116-40-55		6.40	4004	
	33-57-48	116-30-08	1,100	3.71	4103	DESERT HOT SPRINGS
		X-22	ANZA-BO	DRREGO H	HYDRO (JNIT
X-22.A	33-16-08	116-24-59	850	2.95	4004	BORREGO DESERT PAR
	33-26-23	116-30-32	2,300	1.18	4004	COYOTE CN.
X-22•C	33-12-33	116-32-30	4,000	8.43	4004	RANCHITA
		X-23	IMPERIA	L HYDR	D UNIT	
X-23•A	32-40-28	115-28-57	3	1.40	4004	CALEXICO 2NE
	32-46-02		-37	1.10	4004	EL CENTRO 255W
	32-50-57		-69	1.18	4004	IMPERIAL
	32-58-53		-119	1.37	4004	BRAWLEY 25W
	33-16-41	115-31-23	-55	1.02	4004	NILAND
X-23•B	32-44-32	115-57-48	250	1.24	4004	COYOTE WELLS

HYDRO	LATITUDE	LONGITUDE	ELEV.	PRECIP.	AGENCY	STATION NAME
					L	
		SANTA	ANA DR	AINAGE	PROVINC	E (Y)
1		Y-01	SANTA	ANA RIV	ER HYDR	O UNIT
Y-01•A	33-36-15	117-53-00	8	6.97	4004	NEWPORT BEACH HARBOR
	33-36-26	117-42-07	400	7.94	3102	EL TORO-MOULTON
	33-38-13	117-47-54	300	7.00	3102	IRVINE COSHADY CAMP
	33-38-26	117-55-20	90	7.57	3102	COSTA MESA-DODGE
	33-39-13	117-42-53	350	6.14	3102	IRVINE COJOHNSON RN.
	33-39-39	117-59-57	35	7.79	3102	HUNTINGTON BEACH
	33-39-48	117-49-50	80	6.10	3102	IRVINE COOLD RANCH
1	33-40-30	117-45-37	200	6.39	3102	IRVINE COWAREHOUSE
	33-40-32	117-47-54	100	6.10	3102	IRVINE COHARKEL RD. CAMP
	33-41-46	117-42-48	400	7.08	3102	IRVINE COLAMBERT
	33-42-38	117-51-16	55	5.04	3102	DYER-HOLLY SUGAR CO.
	33-42-39	117-31-59	5,660	11.99	3102	SANTIAGO PEAK
	33-42-49	117-59-56	25	7.92	3102	WINTERSBURG-SLATER
	33-42-55	117-45-43	197	6.70	3102	SAN JOAQUIN FRUIT CO.
	33-43-21	118-00-46	25	7.47	3102	WINTERSBURG-MURDY RN.
	33-44-18	117-48-00	106	5.46	3102	TUSTIN AUTOMATIC
	33-44-20	117-49-12	120	4.77	3102	TUSTIN UNION H.S.
	33-44-38	117-52-04	115	5.89	4004	SANTA ANA F.S.
	33-45-00	117-52-12	145	5.88	3102	SANTA ANA-O.C.F.C.D.
	33-46-13	117-56-03	90	6.38	3102	GARDEN GROVE-CO. RD. DEPT.
	33-46-15 33-47-15	117-43-15 117-50-26	1,000	7.65	3102	IRVINE COLIMESTONE RN. ORANGE-U.S.F.S.
	33-47-15	117-54-08	216 135	6•87 7•89	3102 3102	ANAHEIM-KATELLA SUBSTATION
	33-48-52	117-49-20	290	7.96	3102	VILLA PARK ORCHARD ASSN.
•	33-49-12	117-54-48	147	8.24	3102	ANAHEIM AUTOMATIC
	33-49-46	117-54-42	150	8.86	3102	ANAHEIM WATER WORKS
	33-50-16	117-50-43	230	9.58	3102	OLIVE HGTS. CITRUS ASSN.
Y-01.B	33-49-51	117-34-41	1,225	9.01	4701	CORONA-FOOTHILL LEMON 2
	33-50-38	117-34-36	1,050	7.74	4701	CORONA-FOOTHILL LEMON 1
	33-51-50	117-35-30	850	8.06	4701	CORONA-FOOTHILL LEMON 3
	33-52-23	117-33-56	680	6.75	5717	CORONA-TEMESCAL WATER 3
	33-57-06	117-23-46	820	5.39	4004	RIVERSIDE FIRE STA. NO. 3
	33-57-37	117-16-42	3,040	6.64	4103	BOX SPRINGS
	33-58-21	117-19-48	1,050	6.33	4004	RIVERSIDE CITRUS EXP. STA.
	33-58-43	117-22-29	875	6.33	4103	RIVERSIDE
	33-59-52	117-40-50	670	8.42	4740	CHINO-S.C.E. SUBSTATION
	34-01-34	117-46-06	820	9.73	1101	POMONA-RIVERA
	34-03-17	117-45-02	876	9.78	1101	POMONA FIRE DEPT.
	34-03-22	117-19-08	940	6.80	4740	COLTON-S.C.E. SUBSTATION
	34-04-05	117-35-25	975	9.85	4731	GUASTI WINE CO.
	34-05-45	117-42-57	1,180	10.45	1101	CLAREMONT F.S.
	34-05-48	117-42-33	1,185	10.47	4004	CLAREMONT-POMONA COLLEGE
	34-06-03	117-26-04	1,279	10.26	5100	FONTANA-HERALD NEWS
	34-06-06	117-26-09	1,280	12.24	4706	FONTANA-UNION WATER CO.

HYDRO					r	
SUBUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME
		Y-01	SANTA	ANA RI	VER HYD	DRO UNIT (CONTD.)
Y-01.B	34-06-28	117-25-36	1,325	10.02	5100	FONTANA
	34-07-08	117-40-45	1,568	11.04	1101	UPLAND-CADNUM
	34-07-22	117-43-11	1,403	10.35	1101	CLAREMONT-INDIAN HILLS
	34-08-23	117-40-35	1,830	11.68	4004	UPLAND 3N
	34-09-20	117-40-55	2,090	12.93	1101	SAN ANTONIO SPR. GRDS.
	34-09-24	117-40-20	2,120	12•81		SAN ANTONIO DAM
	34-12-50	117-40-10	3,200	14.91	1101	SAN ANTONIO CNSIERRA
Y-01•€	33-42-39	117-31-59	5,660	11.99	3102	SANTIAGO PEAK
	33-50-28	117-21-30	1,540	5.68	4103	CAJALCO NO. 2
	33-50-35	117-26-47	1,375	4.55	4103	LAKE MATTHEWS NO. 1
Y-01.D	33-59-43	117-13-55	1,880	8.02	4103	RECHE CANYON-ATOPA RAN
	34-04-00	117-19-23	980	6.60	5100	COLTON-POLICE DEPT.
	34-06-24	117-21-50	1,246	8.90		RIALTO
	34-07-26	117-20-53	1,225	9•43		LYTLE CRS.B.W.D. PLA
	34-09-20	117-23-46	1,590	10.52		FONTANA POWERHOUSE
	34-12-07	117-27-00	2,225	16.45		LYTLE CR. P.H.
	34-12-14	117-26-45	2,250	16.45		LYTLE CR. P.H. NO. 1
	34-12-16	117-26-57	6,050	15.54		RUNNING SPRINGS
	34-13-57	117-28-52	2,720	13.82		LYTLE CR. R.S.
	34-14-14	117-29-28	2,800	17•47	4740	LYTLE CR. S.C.E. INTAK
Y-01.E	34-03-08	117-11-28	1,360	7.41	4004	REDLANDS
	34-04-02	117-08-02	1,650	8.67	4730	MENTONE-CRAFTON ORANGE
	34-05-16	117-02-19	2,965	11.67	4004	MILL CR. NO. 2
	34-06-47	117-10-07	1,370	6.47		E. HIGHLAND-GOLD BUCKL
	34-07-17	117-09-58	1,525	10.62		E. HIGHLAND-ORANGE CO.
	34-07-42	117-16-05	1,125	8.31		SAN BERNARDINO CO. HOS
	34-08-46	117-03-26	2,765	13.49		SANTA ANA RIVER P.H. N
	34-10-21	117-18-44	1,415	8.61	3200	NEWMARK RES.
	34-12-06	117-19-58	1,900	12.34	3200	DEVIL CN.
Y-01•F	33-55-39	116-58-47	2,580	8.73	4004	BEAUMONT
Y-01 .G	34-14-26	116-58-34	6,815	19.62	4004	BIG BEAR LAKE DAM
		Y-02		CINTO V		YDRO UNIT
		1-02	JAN JA			UNO UNIT
Y-02•A	33-53-56	117-15-35	1,533	4•74	4004	MARCH FIELD
Y-02.B	33-47-15	116-58-06	1,550	6.88	4004	SAN JACINTO
	33-55-39	116-58-47	2,580	8.73	4004	BEAUMONT
	33-55-48	116-57-01	2,600	9.98	4103	BEAUMONT S.F. STA.
Y-02.C	33-40-06	117-19-51	1,300	6.29	4004	ELSINORE

DRO	LATITUDE	LONGITUDE	ELEV.	PRECIP.	AGENCY	STATION NAME
		SAN DI	IEGO DRA	AINAGE F	PROVINC	E (Z)
		Z-01	SAN JUA	N HYDRO	UNIT	
01•A	33-32-48 33-36-26	117-46-53 117-42-07	56 400	8•39 7•94	4004 3102	LAGUNA BEACH EL TORO-MOULTON
01•B	33-27-56 33-30-42 33-30-44 33-42-39	117-41-12 117-38-29 117-39-58 117-31-59	20 150 150 5,660	6•90 8•49 8•40 11•99	3102 3102 3102 3102	CAPISTRANO BEACH AUTO SAN JUAN CAPISTRANO SAN JUAN CAP• SUBSTA SANTIAGO PEAK
)1•C	33-25-45	117-36-52	135	6.29	3102	SAN CLEMENTE
		Z-02	SANTA M	IARGAR I T	A HYDR	O UNIT
)2•A	33-13-00	117-23-43	60	5.90	4004	OCEANSIDE-PENDLETON
2•G	33-33-18	116-39-52	3,900	8.89	4004	ANZA
		Z-03	SAN LUI	S REY H	IYDRO U	NIT
13•A	33-15-32	117-01-26	1,615	8.10	4004	VALLEY CENTER 3NE
3•B	33-14-18	116-45-40	2,700	13.53	4004	HENSHAW DAM
3•C	33-17-06 33-20-42	116-38-10 116-50-42	3,180 5,560	7•81 11•28	4004 4004	WARNER SPRINGS PALOMAR
		Z-04	CARLSBA	D HYDRC	UNIT	
4 • A	33-11-38	117-22-37	67	6.55	4002	OCEANSIDE NO. 4
14 • E	33-03-45	117-15-15	170	5.99	4002	SCOTT RANCH
4•F	33-01-12	117-12-06	240	6•24	4002	RANCHO SANTE FE
		Z-05	SAN DIE	GUITO H	IYDRO UI	TIN
5 • A	32-59-06 33-01-12	117-15-10 117-12-06	200 240	4•98 6•24	4004 4002	LOCKWOOD MESA RANCHO SANTE FE
5•D	33-03-41	116-50-53	1,470	9.74	4004	RAMONA-SPAULDING
!5∙E	33-06-30 33-12-16	116-40-27 116-45-43	2•984 3•600	13.95 15.83	4002 4002	SANTA YSABEL STORF HOLDREDGE RANCH

HYDRO SUBUNIT	LATITUDE	LONGITUDE	ELEV.	PRECIP	AGENCY	STATION NAME	
	Z-06 PENASQUITO HYDRO UNIT						
Z-06•A	32-59-06	117-15-10	200	4.98	4004	LOCKWOOD MESA	
Z-06•8	32-57-00	117-03-48	440	7.14	4004	POWAY VALLEY	
	Z-07 SAN DIEGO HYDRO UNIT						
Z-07•A	32-46-12		528	6.12		LA MESA	
	32-46-51 32-51-56	117-02-38 116-53-39	535 450	6•18 8•04	4002 4004	MURRAY DAM LAKESIDE 2 ENE	
	32-53-09		600	8.66	4004	EL CAPITAN DAM	
Z-07.D	32-59-20	116-35-12	4,650	12.78	4004	CUYAMACA	
	33-05-34			13.98	4004	JULIAN WYNOLA	
	33-06-30	116-40-27	2,984	13.95	4002	SANTA YSABEL STORE	
		Z-08	CORONA	DO HYDRO	O UNIT		
Z-08•A	32-40-22	117-14-27	410	2.96	4004	CABRILLO N.M.	
Z-08•B	32-43-59	117-10-32	19	3.98	4004	SAN DIEGO AIRPORT	
2-00.0	32-46-12	117-00-44	528	6.12	4004	LA MESA	
Z-08.C	32-40-04	117-06-42	15	3.48	4002	NATIONAL CITY	
	ан. 1. т. т			9 - 10			
	Z-09 SWEETWATER HYDRO UNIT						
Z-09.A	32-37-57	117-05-39	25	3.60	4002	CHULA VISTA	
	32-39-34		105	4.45	4004	BONITA	
	32-41-33		300	4.83	4002	SWEETWATER LAKE LA MESA	
	32-46-12	117-00-44	528	6.12	4004		
Z-09•B	32-46-52	116-47-38	1,400	9.63	4002	LAKE LOVELAND	
Z-09•C	32-51-31	116-37-39	3,550	11.70	4004	DESCANSO R.S.	
Z-10 OTAY HYDRO UNIT							
		Z-10	UIAT H	TURO UN	1 (
Z-10.B	32-36-03	117-05-32	9	3.25	4004	CHULA VISTA	
Z-11 TIA JUANA HYDRO UNIT							
		Z-11				0.400 FTT 0.111	
Z-11•B	32-40-49	116-40-21	1,623	8.91	4004	BARRETT DAM	
Z-11•H	32-39-47	116-20-28	3,250	6.41	4004	BOULEVARD S.W.	
1.16							

A-16

APPENDIX B

SURFACE WATER FLOW

TABLE OF CONTENTS

Page

B-1

B-12

DAILY MEAN DISCHARGE

Gaging Station

West Fork of Mojave River below Cedar Springs Longitude 117°18.4', Latitude 34°18.4'. Elevation 3,159 feet. 2 miles NE of Cedar Springs on left bank of West Fork Mojave River at State Highway 118 Crossing. Drainage area: 19.8 square miles.

East Fork of West Fork of Mojave River above Cedar Springs B-4
Longitude 117°17.5', Latitude 34°16.3'.
Elevation 3,580 feet.
2.2 miles east of Cedar Springs on the right bank of the East Fork of West Fork Mojave River.
Drainage area: 11.5 square miles.

West Fork of Mojave River above Cedar Springs B-7 Longitude 117°22.5', Latitude 34°17.1'. Elevation 3,552 feet. 2.6 miles west of Cedar Springs on the left bank of the West Fork of Mojave River. Drainage area: 3.2 square miles.

Elizabeth Lake Canyon Creek above Castaic B-10 Longitude 118°34.2', Latitude 34°33.7'. Elevation 1,469 feet. 3.9 miles north of intersection of Castaic Canyon Road and Elizabeth Lake Canyon Road on left bank of stream at Canyon Christian Camp. Drainage area: 45.7 square miles.

Castaic Creek above Cordova Ranch Longitude 118°39.8', Latitude 34°36.7'. Elevation 1,470 feet. 6.7 miles west of Elizabeth Lake Canyon Road on Castaic Canyon Road on left bank Drainage area: 65.0 square miles.

-	1		2 ×		0°0						•			0.0									. 0		C		56								O AC.FT.
CEDT	200	C	C I	50	50		c ·	Ċ	00			0	c	с	0	0	C		c	0	•	Ċ		c	c	c	c	0	0	0.0	c		° 0	0.0	c
	500	0°0	0.0		0000		0.0	0.0			•	0.0	0.0	0.0	0°0	0.0	0		c c	0.0	0.0	0.0	0.0	0.0	0.0	c° c	0.0	0.0	0.0	0.0	с • с	0	0.0	0.0	0.0
	101	0.0	000		00		C • C	C • 0				0*0	0.0	0.0	0.0	0 * 0		0.0	0.0	0.0	0 • 0	0.0	0.0	c°c	c•0	0 • 0	0.0	0.0	0*0	0.0	C * C	0.0	0.0	0.0	0 • 0
U INIE		0.0	00		000	(00)	0.0	0.0	0.0	0.0	0.0	0,0	0	0.0	0*0	0 • 0	0.0	0.0	0.0	0.0	0	0.0	0.0	0*0	0.0	0.0		0.0	•••	0.0
~~W	MAT	0 • 1	1.0		0.1	,				0.1	4	0.1	∩•1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0*0	0.0	0.0	0.0	0*0	0*0	0.0	0.0	0.1	0.1	0 • 0
	ALA	0.1			0.1					0.1	2	0.1	0.1	0.0	0 • 0	0 • 0	0.0	0.1	0.1	0.1	0 • 1	0.1	0.1	0.1	0.1	0 • 1	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0 0 0
dom	MAR.	0.2		C	0.2	0	N +		0.0	0.2		0.2	0.7	0.2	0.1	1.0	2.3	0.1	0.1	0 • 1	0.1	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	1•0	0.2	5°3	15
	u	0.2		0.1	0.1	•			0.1	0.1		0.1	0.1	0•1	0.1	0.1	0.2	0 • 1	0.1	0.1	0•1	0*0	0.1	0.1	0.1	0.I	0.1	0 • 1	0.2				0.1	0.0	0.0
	NAU																												2 • 5	2.5	2°2	C •D			
IN SECOND FEET	הבי.																																		
NON	NON																																		
UCT																																			
	U M I	-	2 1	0 4	r vî		0 r	- 0	οσ	, Q		=	12	51	4	5	91	17	e) -	6	20	2 1	2.2	2 3	24	2	26	27	P Z	5.7	0 -	;	MEAN	MAX.	ACFT

WATER STATION NO

DAILY MEAN DISCHARGE

B-1

NR - No Record * - Dischorge measurement or observation of no flow mode on this doy. # - E ond *

DISCHARGE

MEAN

TOTAL ACRE-FEET

DISCHARGE GAGE HT MO DAY TIME MUMINIM

DISCHARGE GAGE HT MO DAY TIME MUMIXAM

		DAILY WEST FORK	Y MEAN [OF MOJAVE	DISCHARGE RIVER BELOW	3	CEDAR SPRINGS					STATION V92200	O Z	WATER VEAR 962	
DAY	OCT.	NOV	DEC.	NAL	FE B.	MAR.	APR	MAY	JUNE	ш _Z	JULY	AUG.	SEPT.	DAY
-	0.0	0.0	0.0	0.3	8.6	27.1	21.0	5.7			0.1	0.1	0.0	-
<~ ₽	0.0	0.0	105.3	0.9	0.0	26.1	21°9	0°0 8'7				1.0		N #
. 4				n en 0 0	7°2	22.5	28.2	4.1	1 00		0.1	0.1	000	0 4
ŝ	0.0	0.0	10	0.3	9.2	23 • 9	24.3	4.3	m	-	0.1	0.0	0.0	۲C
Q	0.0	0.0		0.3		51.8	18.9	3 . 8		1	n.1	0°u	0.0	9
~ 0	0.0	0.0	1.8	0•3	8	46.3	19.4	2.6	t • t		0•1	0.0	0.0	~ 0
20 07	00		- -	2.0	64°	36.5	د 18ء 17ء ع	Z • 1						0 0
õ	0	0.0		0.2	- 5	33 8		4.7			0.1	0.0	c • 0	10
=				e . C	545.8	32.22	16.9	1.6		"	["0	0.0	0-0	=
12		00	9.0	n m	437.1	31.4	16.2	1.0	0°0		0.1	0.0	00	í2
-13	0.0	0.0		0.3	125.0	29.6	17.3	1.3		9	0.1	0.0	с ° с	5
4 4	0.0	0.0		0.9	66.0	25.9	16.5	6.6		<u></u>		0.0	00	4 4
0	0•0	0.0		0•3	154.0	23.1	14.6	13.0			0.1	0.0	0 0	2
9	0.0	0.0		0.3	168.0	23.8	12.2	ŝ	_	1	0 • 1	0.0	0.0	16
17	0.0	0.0		0.3	90.5	25.1	9°8	5		1	0.1	0.0	0.0	2
e o	0.0	0.0		0.3	59.	24.9	10.6	12.7			0.1	0.0	с. с.	σ
50	0.0		1.4 1.4	0°0	101.2	26•8 31.9	14.0	11.5	1.5		0.1			5 0
	•													
21	0.0	0.0	1.4	5.4	66.8 52 2	27.1	13.1	7•1	2.0	10	0.1	0.0		2 2 - 2
23			+ 6	50	23•2	34.4	0 - 1 1	- 0 • 1				0.0		2 3
24				1 C	47.2	30.8	12.9	2.5			0.1	0.0	с•с	2 4
25	0.0	0.0		9.4	46.0	26.9	14.0	5.0	с 		0.1	0.0	0•0	25
26	0.0	0		4.4	41.7	24.27	13.5	8.6			1 - 0	0-0	0.0	26
27				0.0	10 10 10	22.5	13.5	10.5			0.1	0.0	0.0	27
28	0.0	0.0	~	9.4	32.0	21.0	10.5	8.5	0.1	- 1	0.1	0.0	0.0	62
0	0.0	00		0.0		22.6	2.0	n -			1.0	00		30
31	0.0	0.0	n m - C	V 00 • •		21.9	1 • 0				• • •	0	0	1
MEAN				0	C 201	u 0 0	16 2	4			-	0	c	MEAN
MAX				• • •	100.2 545.8	0 1 1 0 1 0 1	28.2	15.8				0.0		MAX.
MIN.	0.0		0.0	0.2	9•6	21.0	6.1		0.1	1	0.1	0.0	0.0	MIN.
ACFT.			_	301	5898	1754	929	388	-		9	-		AC.F.
	E - Estimated	ted					WATER	~	EAR SUMMARY	AARY				
	NR - No Record	cord	and an observation	MEAN		M A	MAXIMIM	ſ		MENIMEN IN	MI	ſ	TOTAL	_
	ł	low mode on	of an flow mode on this dow	č	1	- Г		7.1MF		TU POAC	1200	TIME		
	# 1 = E and #	HOM HODE ON	-	5000	_	DISCHARGE 64	GAGE HI MO DAT	M M	U SCHARGE	0406 11		LI E		

B~ 2

Junk Oct Nov E Max Junk Junk<			WEST FORK	OF MOJAVE RIV		RIVER BELOW CEDAR SPRINGS	SPRINGS				2	V92200	YEAR 1963	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< th=""><th>< </th><th>0C T.</th><th>NON</th><th>DEC.</th><th>JAN</th><th>F EB.</th><th>MAR</th><th>APR.</th><th>MAY</th><th>JUNE</th><th>JULY</th><th>AUG.</th><th>SEPT</th><th>DAY</th></t<>	<	0C T.	NON	DEC.	JAN	F EB.	MAR	APR.	MAY	JUNE	JULY	AUG.	SEPT	DAY
0.0 0.0 <td>-</td> <td>0.0</td> <td>0*0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.2</td> <td>0.0</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-	0.0	0*0	0.0	0.0	0.0	0.2	0.0	•					
000 000 <td>~</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0*0</td> <td>0.0</td> <td>0 • 3</td> <td>0.8</td> <td>0</td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td>-</td>	~		0.0	0.0	0*0	0.0	0 • 3	0.8	0			0.0	0.0	-
0.0 0.0 <td>m</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.3</td> <td>0.7</td> <td>7.7</td> <td></td> <td> </td> <td>0</td> <td>•••</td> <td>2</td>	m	0.0	0.0	0.0	0.0	0.0	0.3	0.7	7.7		 	0	•••	2
0.0 0.0 <td>4</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.3</td> <td>0.7</td> <td></td> <td>יי - ר</td> <td></td> <td>0</td> <td>0.0</td> <td>m </td>	4		0.0	0.0	0.0	0.0	0.3	0.7		יי - ר		0	0.0	m
0.0 0.0 <td>ĥ</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0•0</td> <td>0.2</td> <td>0.7</td> <td>3.7</td> <td></td> <td>1.1</td> <td>0.0</td> <td>0.0</td> <td></td>	ĥ	0.0	0.0	0.0	0.0	0•0	0.2	0.7	3.7		1.1	0.0	0.0	
0.00 0.00	ų	0.0	0	0	0						1	-	0•0	n
0.00 0.00	p r				0.0	0.0	0.2	0.7	3°5	1.3	0	c 		-
0.00 0.00	- (0.0	0.0	0.0	0.2	0.7	9°9					
0.00 0.00	20		0.0	0.0	0.0	0.0	0.2	0.7	2.8		0 0		0.0	~ .
0.0 0.0 <td>6</td> <td>0.0</td> <td>0.0</td> <td>0*0</td> <td>0.0</td> <td>11.6</td> <td>0.2</td> <td>0.7</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>0.0</td> <td>œ</td>	6	0.0	0.0	0*0	0.0	11.6	0.2	0.7				0.0	0.0	œ
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0	0.0	0.0	0.0	0.0	60.0	0.2	0.7	1.9		1 0 1		0.0	б <u>(</u>
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0 • 1</td><td>0.0</td><td>0*0</td><td>2</td></t<>											0 • 1	0.0	0*0	2
0.0 0.0 <td>= '</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0*0</td> <td>3.1</td> <td>0.2</td> <td>0.7</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td>	= '	0.0	0.0	0.0	0*0	3.1	0.2	0.7	9					
0.0 0.0 <td>~</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.2</td> <td>0.2</td> <td> 0</td> <td>10</td> <td>C • 7</td> <td>• •</td> <td>0.0</td> <td>0.0</td> <td>=</td>	~	0.0	0.0	0.0	0.0	1.2	0.2	0	10	C • 7	• •	0.0	0.0	=
0.0 0.0 <td><u> </u></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.2</td> <td>0.0</td> <td></td> <td>- 4</td> <td>* * • -</td> <td>6.0</td> <td>0.0</td> <td>0.0</td> <td>2</td>	<u> </u>	0.0	0.0	0.0	0.0	1.2	0.0		- 4	* * • -	6.0	0.0	0.0	2
0.0 0.0 0.0	4	0.0	0.0	0.0	0.0					۲ • T	0.6	0.0	0.0	5
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>£</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>1.0</td><td>0.0</td><td>0-1</td><td>7 t </td><td>-1 -</td><td>0.3</td><td>0.0</td><td>0.0</td><td>-</td></t<>	£	0.0	0.0	0.0	0.0	1.0	0.0	0-1	7 t 	-1 -	0.3	0.0	0.0	-
0.0 0.0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C • T</td> <td>C • T</td> <td>0•1</td> <td>0.0</td> <td>0.0</td> <td>5</td>									C • T	C • T	0•1	0.0	0.0	5
0:0 0:0 <td>9</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.5</td> <td>0.5</td> <td>1.1</td> <td>~</td> <td></td> <td></td> <td></td> <td></td> <td></td>	9	0.0	0.0	0.0	0.0	0.5	0.5	1.1	~					
0:0 0:0 <td>-1</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.3</td> <td>1.4</td> <td>+ (* • -</td> <td> -</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0*0</td> <td>9</td>	-1	0.0	0.0	0.0	0.0	0.3	1.4	+ (* • -	 -		0.0	0.0	0*0	9
0.0 0.0 <td>8</td> <td>0</td> <td>0°0</td> <td>0.0</td> <td>0.0</td> <td>0-2</td> <td>6.1</td> <td></td> <td>- - -</td> <td>1.2</td> <td>0.0</td> <td>0.0</td> <td>C ° 0</td> <td></td>	8	0	0°0	0.0	0.0	0-2	6.1		- - -	1.2	0.0	0.0	C ° 0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td>6-</td><td>c</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.2</td><td>0.7</td><td>1.1</td><td>1.1</td><td>1.0</td><td></td><td>0.0</td><td>60.4</td><td>20 0</td></t<>	6-	c	0.0	0.0	0.0	0.2	0.7	1.1	1.1	1.0		0.0	60.4	20 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <	50	0.0	0.0	0.0	0.0	0.2	0.7	1.8	1.2			00	20.4	
0.0 0.0 0.4 0.6 22.3 1.3 1.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.6 11.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.6 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 5.2 2.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 14.8 2.4 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td>•</td> <td>0.0</td> <td>+ • 0</td> <td>2</td>		0	0						1	1	•	0.0	+ • 0	2
0.0 0.0 <td>- 0</td> <td></td> <td></td> <td>2 ¢</td> <td>0.0</td> <td>0.4</td> <td>0.6</td> <td>22.3</td> <td>1.3</td> <td>1.2</td> <td></td> <td>0</td> <td>-</td> <td>10</td>	- 0			2 ¢	0.0	0.4	0.6	22.3	1.3	1.2		0	-	10
0.0 0.0 <td>1 10</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>0•3</td> <td>0.6</td> <td>11.6</td> <td>1.4</td> <td>2 - [</td> <td></td> <td></td> <td></td> <td></td>	1 10				0.0	0•3	0.6	11.6	1.4	2 - [
0.0 0.0 </td <td>4</td> <td></td> <td></td> <td></td> <td>0.0</td> <td>0.3</td> <td>0.9</td> <td>7.5</td> <td>1.6</td> <td>1.2</td> <td></td> <td></td> <td></td> <td>5 3</td>	4				0.0	0.3	0.9	7.5	1.6	1.2				5 3
0.0 0.0 <td>25</td> <td>0.0</td> <td></td> <td></td> <td></td> <td>2.0</td> <td>1.0</td> <td>6.7</td> <td>2.0</td> <td>1.2</td> <td>0.0</td> <td></td> <td></td> <td>2 4</td>	25	0.0				2.0	1.0	6.7	2.0	1.2	0.0			2 4
0.0 0.0 <td></td> <td>)</td> <td></td> <td>0</td> <td>0</td> <td>7*0</td> <td>0.7</td> <td>6.2</td> <td>2.2</td> <td>1.1</td> <td>0.0</td> <td>0-0</td> <td></td> <td>25</td>)		0	0	7*0	0.7	6.2	2.2	1.1	0.0	0-0		25
0:0 0:0 <td>2 6</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0 - 0</td> <td>~</td> <td>5</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2 6	0.0	0.0	0.0	0 - 0	~	5	0						
0:0 0:0 <td>27</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td></td> <td>0 0</td> <td>4 • t</td> <td>1•1</td> <td>0.0</td> <td>0*0</td> <td>0.0</td> <td>26</td>	27	0.0	0.0	0.0				0 0	4 • t	1•1	0.0	0*0	0.0	26
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 7.3 1.5 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 9.2 1.5 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.7 4.3 2.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.7 4.3 2.7 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28	0.0	0.0	0-0		9 C		13.9	3•1	1•1	0.0	0.0	0.0	27
0.0 0.0 <td>29</td> <td>0.0</td> <td>0.0</td> <td>0-0</td> <td></td> <td></td> <td>n . •</td> <td>10.0</td> <td>2 • 5</td> <td>1•1</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>28</td>	29	0.0	0.0	0-0			n . •	10.0	2 • 5	1•1	0.0	0.0	0.0	28
0:0 0:0 <td>30</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td></td> <td>0 4</td> <td>~ · ·</td> <td>1.5</td> <td>1•1</td> <td>0°0</td> <td>0.0</td> <td>0°0</td> <td>2 9</td>	30	0.0	0.0	0.0			0 4	~ · ·	1.5	1•1	0°0	0.0	0°0	2 9
0.0 0.0 <td>÷</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td>‡ C</td> <td>7.6</td> <td>1.44</td> <td>1.2</td> <td>0•0</td> <td>0.0</td> <td>0°0</td> <td>0 20</td>	÷	0.0		0.0	0.0		‡ C	7.6	1.44	1.2	0•0	0.0	0°0	0 20
0:0 0:0 <td>t</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.4</td> <td></td> <td>I • 3</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td>-</td>	t						0.4		I • 3		0.0	0.0		-
0.0 0.0 <td>EAN</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>3.0</td> <td>0.7</td> <td>4.3</td> <td>2.7</td> <td>2-1</td> <td>u C</td> <td>0</td> <td>r</td> <td>MFAN</td>	EAN	0.0	0.0	0.0	0.0	3.0	0.7	4.3	2.7	2-1	u C	0	r	MFAN
0.0 0.0 <td>N N N</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>60.0</td> <td>4.3</td> <td>22.3</td> <td>0.4</td> <td>7 1</td> <td>•</td> <td>••••</td> <td>1.2</td> <td>MAX</td>	N N N	0.0	0.0	0.0	0.0	60.0	4.3	22.3	0.4	7 1	•	••••	1.2	MAX
E - Estimated NR - No Record NR - No Record * - Discharge measurement or observation # - Discharge measurement or observation # - Discharge Discharge Discharge Discharge Discharge Gade HT wo Day Time ACRE-FEET	i Lu	0.0	0.0	0.0	0.0	0.0	0.2	0.7					60.4	N
- Estimated - No Record - Discharge measurement or observation - Discharge measurement or observation - E and ** - E and **						165	43	255			0 ec	2	0.0	AC.FT.
- Estimated - No Record - Discharge measurement or observation - Discharge Discharge Discharge Gage HT MO DAY TIME - E on 1% - E on 1% - E on 1% - E on 1%	1								ĺ					
- Discharge measurement or observation MEAN MAXIMUM - Discharge and this day. - E and *	12	E 1						WAIE						
of no flow made an this day. DISCHARGE DISCHARGE GAGE HT WO DAY TIME DISCHARGE GAGE HT WO DAY TIME	*	1	meosurem	nt or observati	C	N	MAXI	MIM		ALLALLA	LALLAN	\int		0
			made an	his day.	-	1			Т	ININ LANCE LANCE			IDIAL	
	#	I							_			W	ACHE-FELT	

890

0.0

60.4

R 1•3

B~3

DAILY MEAN DISCHARGE

STATION NO WATER

		DAY	-	2 *	n 4	r in	9 1	- 8	, o	0	=	2 :	6 4	1 10	16	2	ep (6- 0 0	2	5 - 2	23	24	25	26	2 L L L L L L L L L L L L L L L L L L L	29	3.0	3 -	MEAN	MAX.	MIN.	C.F.I.				
WATER YEAR		SEPT. C	0.0	0.0	0.0	c c c c	0.0	0.0			0.0	0.0	0.0	0.0				0.0			0.0					с с с с								TOTAL		ACHE-FEET
STATION NO W	10	AUG	0.0	0.0	0.0		0.0	000		00	0.0	0.0	0.0	0000			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	0					(Т	TIME
STA	V92250	JULY	0.0	0.0	0 0		0.0	000			0.0	0.0	0.0	0 0 0 0 0 0		000	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0		0.0	0			-		MUM		GAGE HT MO DAY TIN
		JUNE	0.2	0.2	1.0	0 0 0 0	0 • 2	2.0	v c	0.2	0.2	0.2	0.0	0.2		1.0	0.1	0.1	0.0	0.0	0.0		0.0	0.0	0.0	0.0				••••	0.0	7	SUMMARY	MUMINIM		
		MAY	0.4	4.0		0.2	0.2	0.0	0.0	0.2	0.2	0.2	0.2	0.2	((0.2	0.2	0.0	7•0	0.2	0.2		0.2	0.2	0.2	0.0	N	0.2	0	1 1	0.0	14	YEAR		Т	IME DISCHARGE
	SPRINGS	APR	0.2	0.2	2.0	0.2		0.0		0.2	0.2	0•3	0.7	0 • 0 • 0	0	N 60 C	0.3	0°3	د •0	0.3	0°,	n n 0 0	0.9	0.3	0.3	0.0	۰ د د د		0	1 - 0	0.2	16	WATER	WITH	- 1.00 beer -	GAGE HT MO DAY TIME
	E CEDAR SPE	MAR																																MAXIMUM	- 1	
	E R. ABOVE CEDAR	F EB.																			-					_						-			_	GE DISCHARGE
DISCHARGE	FORK OF MOJAVE	JAN		_																			_			_						-		MEAN		DISCHARGE
MEAN DIS	F WEST FORK	DEC.																				_		_										No Record Dischoros measurement or observation	In Outpat and In	s doy.
DAILY	EAST FORK OF	NOV																			-	_			_							-	p	d mensurement	to the second second	or no riow mode on this doy.
	ιώ	OCT.																															E - Estimated	NR - No Record	•	01 DU 10
		DAY	-	~ ~	0 4	τ ν Ω	9 1	~ 60	0	Ō	=	12	5 4		9	17	89	6- 0	2	- 2	23	24	25	2.6	27	29	30	31	MEAN	MAX.	MIN.	ACFT.	u	Z¥		

B-4

		EAST FORK	OF WE	OF	α	ABOVE CEDAR SPRINGS	SPRINGS					962	
DAY	OCT.	NON	DEC.	JAN	F E B	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT	DAY
-	0.0	0.0	0.4		5.0	23.8		3.8	2.6	0.8	0.2	0.0	-
2	0.0	0.0	17.0	1 ° 3	2.9	22.8	16.4	3.8	2.3	0.8	0.2	0-0	2
ŕ	0.0	0.0	9 • 2		3°9	21.7		3.6	2.4	0.8	0°2	0.0	3
4	0•0	0.0	2 • 3		4.5	20.6		3° U	2.2	с. С	0.2	0.0	4
ŝ	0.0	0°0	1 • Ľ		4.4	20.7		3.4	2.2	0•8	0+2	0.0	ŝ
ų	0.0	c	C - 1		4.5	3 00		0.6		r 0	-	0	y
~				•		73.4			- 0 				, r
- a					0 * 1 C					0 . 5 c			- a
0 0				1 P			с н С н		•		- • • • •		0 0
					C • 0 9	0	•	7 0 • 0					- <u>-</u>
2	•••	0.0	0		V • 0 D	\$ • 		C + V	1 • 0	0	0*0	•••)
-	0.0	0.0	8			34.3	• ۲	2.7	1.6	0.6	0-0	0.0	Ξ
12	0.0	0.0	0.6			31.6	13.4	2.9	1.5	0.6	0.0	0.0	12
13	0*0	0.0	0.5	1.4	°.	28.2	6.9	2.8	1.6	0.6	0.0	C ° C	ŗ.
4	0.0	0.0	0.6		- -	26.5	6.5	4.3	1.8	0.6	0-0	0-0	4
5	0.0	0.0	0.6	1.2	88.2	24.7	6.2	3°0	1.9	0.6	0.0	0.0	<u>ç</u>
91	0.0	0.0	0.7	0.9	70.6	4.	5 ° 7	0.0	1.7	0°6	0°0		9
17	0.0	0°0	0°7	0°0	100.7	2.	л. С	7.1	1.5	0°6	0-0		2 0
90	0.0	0°0	0.8	0 • 6	98.1	34.8	5.2	5 • 4	1 • 4	0.5	0.0	0.0	0
6	0.0	0.0	0 - 8	0.8	103.2	~	5°2	5°0	1.3	0.5	0°0		
0 2	0•0	0.0	0.8	34.2	92.5	°.	4.7	4°2	1 • 2	0.5	0.0		0,2
2 1	0.0		8	51.3	α		6.4	2.5	2 - 1	ير د	0-0		2 1
22					1				10				22
23			0	11.0	• •				1 -				2 3
24	0-0		2-0	5.2		، ، د	4 - 1	7 - 2	9	4-0	0.0		24
25	0.0	0.7	0.7	4.6	73.5	38.4	4.5	3.2	0.0	0.4	0	0.0	25
													26
0 7 0	0.0	0.6	0.8	5.7	ŝ	~	4 • 1	3°9	2.3	0.4	0.0	0.0	2.7
- a c	0.0	0.5	0.8	6 • Z	41.3	0	4.2	3.5	0.9	0.3	0.0	0.	2.8
0	0.0	0.4	0.7	6 • 4	÷	24.07	4°0		6.0	0.0	0.0	0.0	2 9
	0.0	4 ·	0	0 ·		5.0	£ ° 4	5 5 5	л с О	2.0	00	0°0	30
	0.0	0 • 4	0.0			* o	20 70	å1	۲ 0	0.0	00	2 ° 0	-
;	0.0		1.0	0.0		3		2.07		7.0	0.0	0	
MEAN	0 • 0	0.1	1.6	4 . 8	76.0	35 .5	7.8	3.7	1.7	0.5	0.0	0.0	MEAN
MAX.	0.0	0.7	17.0	34.2	280.3	90°5	19.9	0°6	3.0	0 • 8	0.2	0.0	M AX
MIN.	0.0	0-0	0.4	0.8		20.0	3.8	2.7	0.9	0.2	0°0	c°c	WIN.
ACFT.		80	101	207	4220	2186	463	230	100	33	8		ACFI.
									0.000000000				
-	E - Estimated	ofed					WALER						
	NR - No Record	cord		L		244	1 4 41 1 4 4		AA AAA			TOTAL	C
		Discharge measurement	tent or observation		MEAN	V WW	MAXIMUM		INIIM	MINIMUM			

STATION NO WAIEN

UNICI MEAN UISCHANGE

B-5

Discharge measurement ar observation of no flow made an this day.
 E and *

DISCHARGE 455°6 DISCHARGE 131.7

DISCHARGE GAGE HT MO DAY TIME MUMINIM

31.7

7640

ACREFEET TOTAL

GAGE HT MO DAY TIME

ш
В
č
Ā
Ì
SC
0)
ō
-
_
Z
۹
LLI
Σ
≻.
_
Ā
٥

EAST FORK OF WEST FORK OF MOJAVE P. ABOVE CEDAR SPRINGS

WATER YEAR 1963

> STATION NO V92250

	DAY	- (V m 4 10	9 ~ 8 6 0	1 2 5 4 5	16 13 14 14 14 14 14 14 14 14 14 14 14 14 14	2 7 7 3 5	26 27 29 30 3-	MEAN MAX. MIN. AC.FT.	
	SEPT.	00000			328 0 4 5 6 6 0 0 0	000000 4 4 m N N 000000	0 • 2 0 • 2 0 • 1 0 • 1	11.2 328.6 0.0 667	
	AUG.	00000	00000	000000		00000		0000	
	JULY	00000 00000	00000	00000		C C C C C 0 C C C C C		0 0 4 0 4	
	JUNE	889998 ••• 00000	0 1 1 1 0 0 0 0 0 0 0	00000 000000 000000	00000 • • • • •	00000 ••••• ••••		000 34 8 6	SUMMARY
	MAY	11111 ••••• ••••0040	122		00000	000000 0000000000000000000000000000000	001100 •••00000 •••00000	1•1 1•7 0•8 66	YEAR
	APR	8 8 8 8 8 8 0 0 0 0 0 0	00000 •••••	0.8 0.8 1.2 8 8 8 1.1 1.2	1 • 1 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	1 0 3 4 0 1 0 4 0 0 1 0 4 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 0	1.66 7.1 0.88 944	WATER
	MAR	00000 00000	00000 00000	00000 	0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	11111 ••••0 •••0	0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 11 0	
	FEB.	00000 00000	60°20 60°20 7°10 7°10 7°10	2 • 1 • 1 • 0 • 0 • 0 • 0 • 0	000 7 • 00 7 • 00 7 • 00 7 • 00	00000 •••••	000 ••••	2.88 47.1 1533	
EET	JAN	NNMNN 00000		m N m m 4 00000	200000 400000	4 M M M M 9 , 0 0 0 0 9 , 0 0 0 0	4 m m m 4 4 • • • • • • • • • • • • • • • • • •	0.3 0.5 18	
IN SECOND FEET	DEC.	00000 00000		N N N N N • • • • • • 0 0 0 0 0	N N N N N • • • • • • • • • •	××××××	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.2 0.2 0.1 12	
	NON				00000 00000 00000	00000 00000	00000 00000	0 • 1 0 • 2 0 • 1 9	Þ
	0C T.	2.9 7.3 8.0 15.2	15°5 7°5 00°2 10°1	00000	00000	00000	000000	2.1 15.5 0.1 128	E - Estimated
	DAY	- N 19 4 10	9~869	= 0 n 4 0	16 19 20	23 23 25	26 27 28 30 31	MEAN MAX. MIN. AC.FT.	U

B-6

NR - No Record * - Discharge measurement or observation of no flow mode on this day.

TOTAL ACRE-FEET

MINIMUM DISCHARGE GAGE HT MO DAY TIME

MEAN MAXIMUM DISCHARGE GAGENT MO DAY TIME

N recond And cond	Introne ref	In scone ret And APR Mar JUNE		WEST FORK	OF MOJAV		OVE CEDAR	SPRINGS					V92300 1	YEAR 1961	
OCT MOV OEC JAN FEA MAR JAN JULY JULY </th <th>OCT NOV DEC JAN FEB MAR APR MV JULY AUG SEPT 1 0<th>OCT NOV OEC. JAN FEB. MAR APR MAY JUKE JUKE<</th><th></th><th></th><th>IN SECOND</th><th>reet</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th>	OCT NOV DEC JAN FEB MAR APR MV JULY AUG SEPT 1 0 <th>OCT NOV OEC. JAN FEB. MAR APR MAY JUKE JUKE<</th> <th></th> <th></th> <th>IN SECOND</th> <th>reet</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	OCT NOV OEC. JAN FEB. MAR APR MAY JUKE JUKE<			IN SECOND	reet									
30002 30000000 30000000 3000000 3000000	1 0.1	E -5.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 <th></th> <th>NON</th> <th>DEC.</th> <th>U AN</th> <th>w</th> <th>MAR.</th> <th>APR</th> <th>MAY</th> <th>JUNE</th> <th>JULY</th> <th>AUG.</th> <th>SEPT.</th> <th>DAY</th>		NON	DEC.	U AN	w	MAR.	APR	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	MATE 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.01 0	E -511 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1	_					0.1	1.00	0.0	00	0.0	0.0	0.0	- 0
	MATER VALUE VALUE <td< td=""><td>E -511 0.11 0.11 0.11 0.01 0.11 0.11 0.11 0.11 0.11 0.01 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.01 0.00 0.00 0.11 0.01 0.01 0.00 0.00 0.11 0.01 0.01 0.00 0.00 0.11 0.01</td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.0</td><td></td><td></td><td></td><td></td><td>מיני</td></td<>	E -511 0.11 0.11 0.11 0.01 0.11 0.11 0.11 0.11 0.11 0.01 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.01 0.00 0.11 0.11 0.11 0.11 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.01 0.00 0.00 0.11 0.11 0.01 0.00 0.00 0.11 0.01 0.01 0.00 0.00 0.11 0.01 0.01 0.00 0.00 0.11 0.01	~							1.0					מיני
	0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0	E -51 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1							1.0	.0		0	0.0	0	4
00000 0000000 000000 000000	MALE 0.01	E - Etimoted 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 </td <td>0</td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td>0.1</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>ŝ</td>	0					0.1	0.1	0.1	0.0	0.0	0.0	0.0	ŝ
	MATER KEAR SUMMARY MATER SUMMARY	E -E110014 0.01 0.01 0.01 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.12 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.11 0.01 0.01 0.01 0.11 0.11 0.11 0.01 0.01 0.11 0.11 0.01 0.01 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>, - - -</td> <td>1.0</td> <td>0.00</td> <td>0.0</td> <td>0-0</td> <td>0.0</td> <td>9</td>							, - - -	1.0	0.00	0.0	0-0	0.0	9
	MATR KAR	E - Etimolog E - E								.0			0.0	0.0	7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MATER VAL VAL <td< td=""><td>E -Etimolo 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01<!--</td--><td></td><td></td><td></td><td></td><td></td><td>0.1</td><td>0.1</td><td>0.1</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>80</td></td></td<>	E -Etimolo 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td>0.1</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>80</td>						0.1	0.1	0.1	0.0	0.0	0.0	0.0	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	E -511 0.1 0.1 0.0 0.0 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 000 011 011 011 011 010 010 011 011 011 011 010 010 011 011 011 011 010 010 011 011 011 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>0.1</td> <td>0.1</td> <td>0.0</td> <td>0.0</td> <td>0*0</td> <td>0.0</td> <td>6</td>						0.1	0.1	0.1	0.0	0.0	0*0	0.0	6
0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0	MATE 0.1	6.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0						0.1	0.1	0*0	0.0	0*0	0.0	0.0	õ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MATER VEAR	E -Etimoted -0.1 0.01						~	c	0		0	C	0-0	Ξ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	MATER YEAR SUMMARY MATER YEAR SUMMARY	E - E3110001 - 0.01 0.00 0.00 0.00 MATER YEAR 2011 0.01 0.00 0.00									0-0	0.0	0.0	0.0	12
	MATER VEAR 0.01 0.00	E - Estimate E							0-1	0	0.0	0.0	0.0	0.0	5
	MATER VEA 0.01 0.00	E - Esimola								0.0	0.0	0.0	0.0	0.0	4
	MATER VEAR 0.01	E -Estimate 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.00 0.00 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>0.2</td><td>0.1</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>15</td></tr<>						0.2	0.1	0.0	0.0	0.0	0.0	0.0	15
	WATER YEAR 0.01	E - Estimate - Estimate - Estimate - Estimate - Estimate								((0	0	9
	MATER YEAR SUMMARY	E -Estimate 0.01 0.01 0.00 0.00 MARF KARF KARF KARF KARF KARF						1.0	0.1	0.0	0.0				17
	0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 <t< td=""><td>E -Estimate 0.000 0.000 0.000 0.000 MATER KAR VEAR 0.000 0.000 0.000</td><td></td><td></td><td></td><td></td><td></td><td>0.0</td><td>0.1</td><td></td><td></td><td></td><td></td><td></td><td>18</td></t<>	E -Estimate 0.000 0.000 0.000 0.000 MATER KAR VEAR 0.000 0.000 0.000						0.0	0.1						18
	WATER VEAR SUMMARY	E - Estimated													6
	WATER YEAR SUMMARY WATER YEAR SUMMARY	F - 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.1 0.0 0.0 0.0 1 0.1 0.1 0.0 0.0 0.0 1 0.1 0.1 0.0 0.0 0.0 1 0.1 0.0 0.0 0.0 1 0.1 0.0 0.0 0						100	0.1	0	0.0	0.0	0.0	0.0	2 0
	0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0	E - Estimated													
	0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0	E - Estimated						0.1	0.1	0*0	0.0	0.0	0.0	0.0	22
	0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0	E -Estimoted 6 -Estimoted				_	0•2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	23
	0.22 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0	E - Estimoted					0.2	0.1	0.1	0.0	0.0				2 4
	WATER YEAR SUMMARY	E - Estimoted					0.2		1.0					0.0	25
	0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0	E -Estimoted 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.1 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.1 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.1 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.0 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.1 0.0.1 0.0.1 0.0.0 0.0.0 0.0.2 0.0.1 0.0.1 0.0.0 0.0.0 0.0.2 0.0.1 0.0.1 0.0.0 0.0.0 0.0.2 0.0.1 0.0.1 0.0.0 0.0.0 0.0.2 0.0.1 0.0.1 0.0.0 0.0.0 0.0.2 0.0.1 0.0.1 0.0.0 0.0.0					1	2							26
	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	E - Estimoted					0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	2.7
	0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0	E - Estimoted					0.1	0.1	0.1	000	0.0	0.0	0.0		2.8
	0.2 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.3 0.2 0.2 0.0 0.0 0.0 1 0.2 0.0 0.0 0.0 0.0 1 0.2 0.0 0.0 0.0 0.0 1 0.2 0.0 0.0 0.0 0.0	E - Estimoted					0.1	0.1	0.1	0*0	0.0	0.0	0.0	0.0	29
	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	E - Estimoted E	-					0.2	0.1	0.0	0.0	0.0	0.0	0.0	30
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	E - Estimoted	0 -					0.2	0.0	0.0	0•0			0.0	in L
	001 001 000 000 000 000 000 000 000 000	E - Estimoted													MEAN
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	E - Estimoted	Z					0.1	0.1	0.0	0.0	0.0	0.0	0.0	MAX
	0.0 0.0 <td>E - Estimoted WATER YEAR SUMMARY</td> <td>X.</td> <td></td> <td></td> <td></td> <td></td> <td>0.2</td> <td>0.1</td> <td>0.1</td> <td>0*0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>N</td>	E - Estimoted WATER YEAR SUMMARY	X.					0.2	0.1	0.1	0*0	0.0	0.0	0.0	N
	WATER YEAR	E - Estimoted	Z.					0 * 0	0.0	0.0	0.0	0*0	0.0	0•0	AC.FT.
	WATER YEAR	- Estimoted													

B-7

ACRE-FEET TOTAL

MINIMUM DISCHARGE GAGE HT. MO DAY TIME

DISCHARGE GAGE HT MO DAY TIME MUMIXAM DISCHARGE MEAN

NR - No Record * - Discharge measurement or observation of no flow made on this day. # - E and *

	SPRINGS
	CEDAR
GE	ABOVE
ISCHARGE	RIVER
MEAN DI	MOJAVE
Σ	96
DAILY	FORK
0	WEST

WATER YEAR 1962 STATION NO V92300

	DAY	- 0 10 4 10	\$ ~ \$ 6 ^	1 2 5 4 5	16 13 20 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26 23 30 3- 30	MEAN MAX MIN. AC.FT.	
	SEPT.		00000					000	
	AUG.	00000	00000	00000	00000				
	JULY	888888 8888 99999 99999	00000					00°7 000 000	
	JUNE	7.00 7.00 7.00	0000 000 000 000 000 000 000 000 000 0	00000 00000	00000 00000	00000 •••••• •••44	4 M M M M • • • • • • • • • •	0.5 0.7 0.3 32	SUMMARY
	MAY	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	000000 00000	11000	11110 ••••• •••••	0 0 0 0 0 0 • • • • • • • • • • • • • • • • •	0000000 •••• 000000	0.9 1.3 0.8 57	R YEAR
	APR	2.2 2.1 2.1		0000 0000	 ••••• •••••••	1 - 2 2 3 3 - 2 2 2 3 3 - 2 2 2 3 3		1•5 2•2 1•1	WATER
	MAR	00001	9 • 1 • • 0 • • 1 • • 1	0000 m	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C II N & Ø	0000446 0000000000000000000000000000000	1.8 3.4 0.1 113	
	FEB.	1 • 1 1 • 1 1 • 1 1 • 0 1 • 0	1 • 0 0 • 9 3 3 • 5 1 4 8 • 4 2 7 • 0	251.6 95.8 19.1 10.9 20.5	14 10 • 8 • 8 6 • 8 6 • 9	00700 00700 0070070	1.5 0.1 0.1	25•0 251•6 0•1 1391	
FEET	NAN	0 • 0 • 0 • 0 • 0 • 0 • 0	00000	00000 •••00 •••00	0 • 2 0 • 2 0 • 2 1 0 • 9	0 • • • • • • • • • • • • • • • • • • •	111111 • • • • • • • • • • • • • • • • •	1.0 10.9 0.1 59	
IN SECOND FEET	DEC.	0.0 11.9 1.5 0.8 0.6	00000 ••••• 04444	4 M M M M M	~~~~~~~ ~~~~~~~~	00000	000000	0 • 7 11 • 9 0 • 0 44	
	NON	00000	00000	00000 ••••			00000		pet
	0CT.							000	F - Fatimoted
	DAY	- ~ ~ ~ ~ ~	9 ~ 8 6 <u>0</u>	11 13 13 15 15	16 19 20	22 23 25 25	26 26 30 30	MEAN MAX. MIN. ACFT	

TOTAL ACRE-FEET

DISCHARGE GAGE HT MO DAY TIME MINIMUM

DISCHARGE CAGENT MO DAVE TIME MAXIMUM

MEAN

NR - No Record
* - Dischorge measurement or observation
of no flow mode on this dow

E - Estimoted

B-8

	DAY	-	~	e)	4	'n	9	2	80	6	ō	=	12	5	4	0	16	21	ap (n (0,7	2 1	2 2	0 4 6	1 10		26	28	2 9	0 m	- 6	MEAN	MAX.	MIN.	-		C	
	SEPT.	0.0	0.0	0.0	0.0	0*0	0.0				0.0	0.0	0-0		0.0	0.0	0=0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	000					0.0			TOTAL	101AL
	AUG.	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0			6	_
	JULY	0.1	0.1	0.1	0.1	0.0	0.0	0-0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0		0.0	0.0	0.1	0.0	1			MINIMUM
	JUNE	0.3	0.3	0.3	0°3	0•3	0 • 3	0-3	0.0	0.2	0.3	0.3	0.3	0.9	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	1 ° 0	0.1	0.1				0.2	0.9	0.1	11	SUMMARY		MUMINIM
	MAY	0.8	0.7	0.7	0.7	9•0	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0 • 4	0.44	0.4	0.4	0.4	0 • 4	0.44	0.4	0.4	n . 0 .	5 ° C	0.3	0.3	5 C	0.0	0.3	0.5	0 8	0.3	29	R YEAR		
	APR	0.5	0.4	0.4	0.4	0•4	0.4	0.3	0.4	0.4	0°3	0.2	0.3	0.3	0.44	0 • 2	0 = 4	0.4	0.4	0.4	0•5	1.1	1.0	0 • 8	0.7	0	1.1	1.2	1.2	107		0.6	1.2	0.2	35	WATER		MAXIMUM
	MAR	0.2	0 • 2	0.2	0.2	0.2	0.2	0.2	0-2	0.2	0.2	0.2	0.2	0.2	0.2	0•3	0.3	0.4	0.4	0.5	0.5	0.5	0.5	0.6	9.0	0	0.5	ں م ا		0.50	0 °	0.4	0.7	0.2	22			2
	F E B.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	1.7	0.7	0.6	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4				0.9		0.3		0.62			0.3	1.7	0.0	18			
	NAU	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0•0	0.0	0•0	0.0		0.0	0.0		0.0		0.0	0.0	0.0			L	MEAN
IN SECOND FEET	DEC.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0				ant or observation
	NOV	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0-0	0.0	0•0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0		0	0.0	0.0		0.0		0.0	0.0	0.0		ted	ord	meosurem
	OCT.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	•		0.0	0.0	0.0	00	0	0 • 0	00			0 • 0	0.0	0.0	0.0		F - Fstimoted	NR - No Record	- 1
	DAY	-	2	r.	4	ŝ	y	~	- α	ο σ	<u>0</u>	-	12	5	4	15	9	17	8 -	6	20	51	22	23	24	0	26	2 2	0 0	00	-0	MEAN	MAX.	MIN.	AC, FT.			

116

0.0

0.2

1.7

 Bischarge measurement or observation of no flow made on this day.
 E and * NH - NO HECOLD

71.LI III 11 0.0011201

YEAR VO YEAR

DAILY MEAN DISCHARGE

ELIZABETH LAKE CANYON CREEK ABOVE CASTAIC

IN SECOND FEET

WATER VEAR 1962 STATION NO 232330

DAY		-	2	r)	4	£	9	7	8	6	0	=	12	<u>د</u>	4	21		91	17	8	61	2 0		2 1	2 2	2 3	24	50	2	26	2.7	80			0		MEAN	MAX.	MIN.	AC.FT.	
SEPT.		0.0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	•	0.0	0.0				0.0	c c				0.0	0.0		0.0	0.0	0.0	0.0	0.0		0.00			2	
AUG		c°c	0.0	0.0	0.0	0.0	0°0	0.0	0-0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0-0	0.0	0			0.0	Ċ			0.0	0.0	0*0			0.0	0•0	0*0	0°0	0.0	0.0			>	
JULY		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0=0	0.0	0.0	0.0	0.0	0.0	0.0	>	0=0	0.0	0.0			0	0.0				0.0	0.0		0.0	0.0	0*0	0.0	0.0	0.0	2.0			•	
JUNE		0 m	3.8	3.8	3.8	4.4	4.1	3.5	3.2	1.9	1.5	1.6	1.6	0.9	1.9	4.6		5.7	3.4	9.0			\$ • D	4.0				0	0.7	1	/ • 0	0°8	0.0	0.0	0.0		5.6	1		717	
MAY		6 • 0	5.7	6.0	6.0	5.7	5.4	5.4	5.4	5.4	5.4	5.4	5 • 4	5.4	5.4	5.4		5.9	8°3	6.9		1 1	1.6	5.7			1 -	a •	5.4		ບ ເ 4 ເ	1.6	5.1	4 ° 7	4.]	4.1	5.6		4	34.3	
APR	L 1	٠				9°2	9.2	0°6	8.7	8.7	8 • 2	7.9	7.7	7.6	7.4	7.0		6.7	6.7	6.7		+ C	0	5.7		•	t (•	6 • 0			1.6	5 • 4	5.4	6.0		5.7	0	5.4	1 4	
MAR		26.9	25°3	22.0	19.4	18 • 5	28.3	24.1	20.6	19.5	18.0	16.4	15.5	14.5	14 .2	13.5		13.2	12.6	13.4	14.7	- 7	C • C 1	7.01	- 1			14.5	12.1		6 • T T	5•11	11.9	10.8	6°6		16.0	28.2	0	983	
FEB.		9.0	0•3	0.4	0.5	0.6	0.6	0.8	75.7	\sim	252.8	901.2	361.2	186.1	121.0	119.7		99 ° 8	81.2	57.0	00.00		14.0	65.3			0.4	t • - t	43°9		5.00	34.0	28.7				104.4	001.0		5799	
NAL		0•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0•0	0.0	0.0	0.0	0.0		0•0	0.0	0-0			5	c				0.0	0*0	0	0.0	0.0	0.0	1.8	1.5	0.9	1.0				
DEC.		0.0	0.0	0*0	0.0	0.0	0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0		0 • 0	0 • 0	0-0			•••	0.0				0.0	0•0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		
NON		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0-0			0.0	0					0.0		0.0	0.0	0.0	0.0	0.0		0.0	0.0			
00.1.		0.0	0.0	0.0	0.0	0 • 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2	0.0	0.0	0.0			0.00	0,00				0.0	C • 0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
DAY		-	2	r	4	2	9	2	80	6	ō	=	12	13	4	51		16	17	8-	61	00	4	2 1	2.2		24		5	26	2 2		2 9	5	20	- M	MEAN	MAX.	MIN.	ACFT	

TOTAL

MUMINIM

MAXIMUM

MEAN

E - Estimoted NR - No Record * - Dischards measurement or observation

SUMMARY

WATER YEAR

B~10

[DAY	- ~ ~ ~ ~	vor oo o∩ O	- 2 n 4 2	0 0 0 0 0 0 0 0	- 0 0 0 0 - 0 6 4 6	26 23 30 30 30 30 30 30 30 30 30 30 30 30 30	MEAN MAX MIN ACFT	
	SEPT	00000			00000			0.0 0.3 1	TOTAL ACRE-FEET 415
	AUG.	00000			20000 •••• 222200			000	T 1 M E
	JULY	c c o c o c o			00000 00000	00000 00000 00000		C C C 0 0 0	DAY
	JUNE	00000 000440	00000 ••••• ••••	00000 ••••• 80894	00000	00000000000000000000000000000000000000	0 • 1 0 • 1 0 • 1 0 • 0	0 • 4 0 • 9 0 • 0 2 3	SUMMARY MINIMUM ARGE GAGE HT MO
	MAY	11.22	10 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 0 1 1 7 8 9 0 0 1 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 0 0 0 0 0 0 8 0 0 4 0 0 4 0	0.9 1.5 0.5 57	TIME DISCHARGE
	APR	1.80.46	 ••••• •••••	ти ти ти ти ти ти ти ти ти ти ти ти ти т		2007 1000 1000 1000 1000	8877258 • 87725	1.9 8.1 115 115	WAT E
,	MAR	0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000		0 6 0 1 1 0 6 0 1 1 0 6 6 6 6 0 6 6 6 6 0 6 6 6 0 6 0 6 0 6	1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.7 6.9 106.5	<u>د</u> د د
	FEB.	00000 44444	0.0 0.4 0.0 11 12.0 3	2 4 0 2 4 4 0 1 1 • 7 7 1 • 1	10000 • 9 9 9 0 • 7 8 9 9 0	00000 ••••• •••••	000 ••• •••	1.8 17.6 10.3 101	
J	NAL			<i>m m m つ</i> つ 0 0 0 0 0	00000 00000000000000000000000000000000	* * * * * * * * * * * * * * * * * * *	CCCCCC 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.52 0.55 130	ON MEAN
IN SECOND FEET	DEC.	C C C C C C C C C C C C C C C C C C C	00000						snt or observation this day.
	NON	00000	00000	00000	00000	00000	<pre>coooo cococ</pre>	000 ••• 000	measureme made on
a a a a a a a a a a a a a a a a a a a	OCT.	00000	00000		00000				E - Estimated NR - No Record * - Dischorge of no flow # - E and *
	DAY	- ~ ~ ~ 4 vs	v ≈ ∞ ⊙	- 0 <u>0 4 0</u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	2 0 0 0 - N 0 0 - N 0 0 0 - N 0 0 0 - N 0 0 0 - N 0 0 - N 0 0 - N 0 0 - N 0 -	MEAN MAX. MIN. AC.FT	

232330 1963

ELIZABETH LAKE CANYON CREEK ABOVE CASTAIC

8-11

LU -
5
ě.
7
2
<u> </u>
C
SC
_
\circ
Z
Ā
ЕΑ
4
ЕΑ
MEA
ЕΑ
MEA
ILY MEA
MEA
ILY MEA

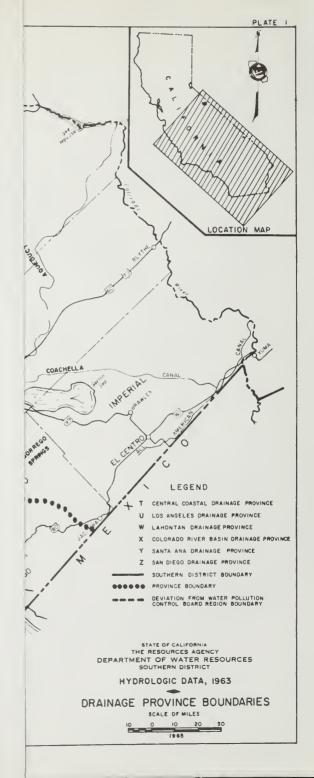
	DAY	-	2	٣	4 K	٦ ر	9	7	@	0 ת	-	2	<u>.</u>	4	5	91	17	<u>م</u> ر	5 0))	5 1		24		26	27	28	5 2	0 -	;	MEAN	MIN	AC.FT.]		_
WATER YEAR 962	S E P T.	0=0	0.0	0.0	0.0	0.0	0.0	0 • 0	0 • 0					0.0	0.0	0		0.0	0.0	0 • 0	0 • 0	0.0	0.0	0.0				0.0	0.0		0.0	0.0	0°U			TOTAL
51ATION NO W	AUG.	0.0	0 • 0	0.0	000	0.0	0*0	0.0	0.0	00			0.0	0.0	0.0	c		0.0	0.0	0.0	0.0	0*0	0.0			00		0 • 0	0.0	0.0	0.0	0.0	0.0			
5TA 232	JULY	0.0	0.0	0.0	C . C	5	0.0	0.0	0.0	00				0.0	0.0	0		0.0	0.0	0.0	0 • 0	0.0	0.0	0000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			NUM
	JUNE		. 0		0°2		1.4	1.4	0.4	4 4 ° C		7 t							е с 0 0				•	n m 0 0							6*0		0.3	SIMMADY		MINIMUM
	MAY	7.1	7.1	7 • 1	6 • 2 ,	7*0	6 • 2	6.2	6.2	6 • 2 6 • 2		2007	6.2	6.2	6.2	1 2	7.1	7.1	7.1	1.01	7.1	6.2	6.2	6.2 6		6 . 2	5.0	5.2	5.2	4.2	6.3	7.1	4.2 387			
	APR	14.6	14.5	14.1	13.7	2 • C T	12.1	11.6	11.5	10.2 10.8	1	10.2	10.2	10.2	10.2	0.01	10.1	9.5	00 °	0 e L	8.1	8 • 1	8.1			1.1	7.1	7.1	7.1		10.0	14.6	7.1 595	WATED		AUM
	MAR	27.3	19.5	35.7	34.2	1.00	74.8	53.6	40.0	31°9 41°0		24 • L	1 60 1 60	30.6	26 ° 7	24.3	21.9	30.8	47.7	C • 1 7				18.2		• •	16.1	• 9	5.	4	29.3	74.08	14°7 1803			MAXIMUM
ANCH	FEB.	0.1	0.1	0.1	0.1	1.0	C.1	0.1	127.5	437.4 2179.3	0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	195.6	132.1	201.6	8.001	119.8	104.3	205.5	1 • ACT	127.4	114.8	104.3	41.69		44.6 22 D	44°0				255.0	2179.3	0.1			N N
MEAN DISCHARGE REEK ABOVE CORDOVA RANCH IN SECONDERET	JAN	0.0	0.0	0*0		5	0.0	0.0	0.0					0.0	0 • 0	0		0.0	000	0	0.0	0*0	0.0			000	0.0	0.0	0.0	0.0	0	0	0			on MEAN
MEAN DISC REK ABOVE CO	DEC.	0.0	0.0	0.0	000	0	0.0	0.0	0.0	000			0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	0.0			ment or observotion
DAILY CASTAIC CF	NON	0.0	0.0	0°с	000	0.0	0.0	0.0	0.0	00	(0.0	0.0	0.0	0		0.0	0.0	0.0	0 • 0	0.0	0.0	0.0			0.0	0.0	0.0		0.0	0.0	0.0		0	meosure
	00.1.	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0		0.0	0.0	0.0	0.0	0.0	0.0	000	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0•0		1	* - Dischord
	DAY	-	2	3	4 4	n	9	2	90	φÖ	:	2	- 3	4	-12	91	17	e) ~	6 C	2	5		5 2 6	5.2	26	27	2.6	29	30	2	MEAN	MAX.	ACFT			

8-12

0 EC. 0 • 0 • 0 • 0	ų							
0.0	F E B.	MAR.	APR	MAY	JUNE	JULY	AUG	SEPT.
	0.0	0.0	0°6	2.3	0.0	0.0	0.0	0.0
0.0								
0.0	0.0	0.0	0.9	1.5	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0•3	0•0	0.0	0.0	0.0	0.0
0*0	0*0	0.0	0.3	0.7	0°0	0.0	0°0	U°U
0.0	0.0	0.0	0°3	0.6	0.0	0 * 0	0.0	0.0
0.0	0*0	0.0	0.3	0.2	0.0	0.0	0*0	0.0
0.0	153.3	0.0	0.5	0.9	0°0	0.0	0.0	0.0
0.0	5	0.0	0.5	1.0	0.0	0.0	0.0	0.0
0.0	2 • 0	0 • 0	0.5	0 • 8	0.0	0.0	0.0	0.0
0.0	0.1	0.0	0.4	0.7	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.9	0.4	0.0	0.0	0.0	0.0
0.0	0 * 0	0.0	0 . 8	0.3	0.0	0.0	0.0	0.0
0.0	0*0	0.0	0.5	0.2	0.0	0.0	0.0	0.0
0.0	0.0	0.6		0.2	0.0	0.0	0°0	0.0
0.0	0.0	4 • Z		2 • 0	0.0	0.0	0.0	0.0
0.0	C . C	0.6		1.0	0.0	0.0	0.0	0.0
		N 0 0 0				0.0		n - c
0	0	V • 0					0.0	-
0.0	0 • 0	0.1	0 • 0	0.1	0.0	0 • 0	0.0	0.0
0.0	0.0	0.1	0.1	0.1	0.0	0.0	0.0	0.0
0.0	0.0	0 • /t	0 • 2	0.1	0.0	0.0	0.0	0.0
0.0	0.0	0 • 2	0.2	0.1	0.0	0.0	0°0	0.0
0.0	0.0	0.2	0°3	0.1	0°0	0.0	0°0	0.0
0 • 0		0.2	47.1	0 • 1	0 • 0	0 * 0	0.0	0.0
0.0	0°0	0.2	2 ° 3	0.1	0.0	0.0	0.0	0.0
0.0	. 0	8.7	2 • 3	0.1	0.0	0.0	0.0	0.0
0.0		1.6	1.4	0.1	0.0	0*0	0.0	0.0
0.0		0.5	0.5	0.1	0.0	0.0	0.0	0.0
0.0	_	0.5		0 • 1	0.0	0.0	0.0	0.0
0.0	11.2	0.6	2.1	0.6	0.0	0.0	0.0	0.0
0.0	159.4	8 . 7	47.1	3.7	0.00	0.0	0-0	0.3
0.0	0 0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
	624	37	123	37				1

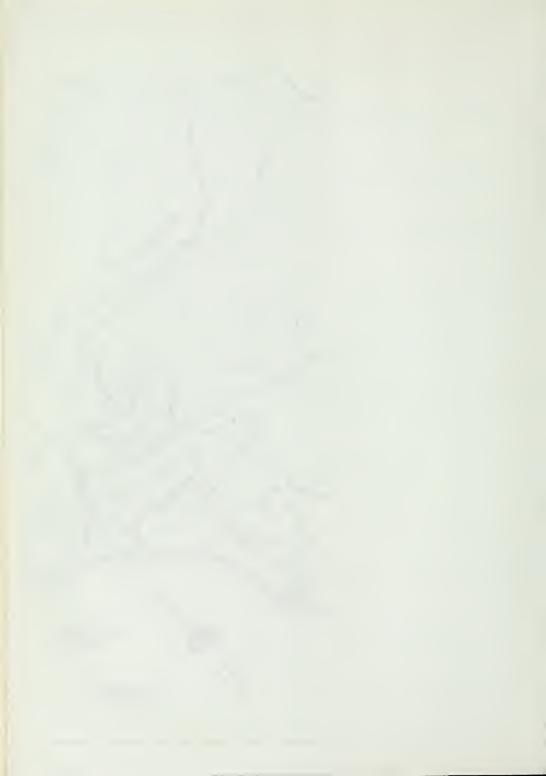
DISCHARGE GAGE HT MO DAY TIME MUMINIM 0.0 DISCHARGE GAGE HT MO DAY TIME MUMIXAM 159.4 MEAN DISCHARGE 1 • 2

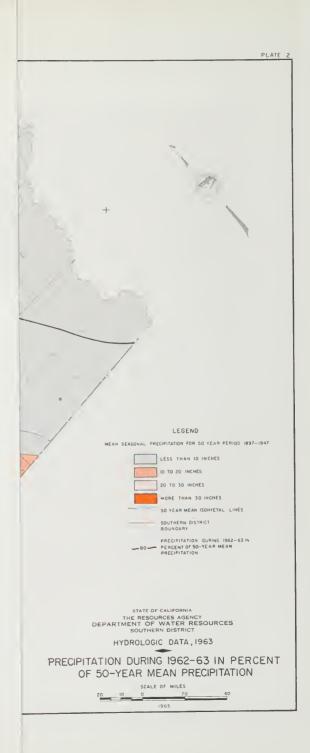
TOTAL ACRE-FEET 822

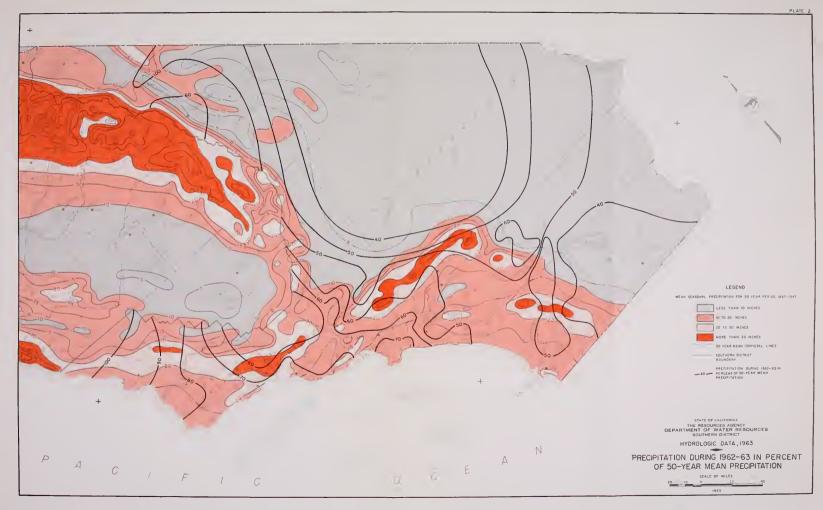

E - Estimated NR - No Record * - Dischorge measurement or observation of no flow made on this day. tt - E and *

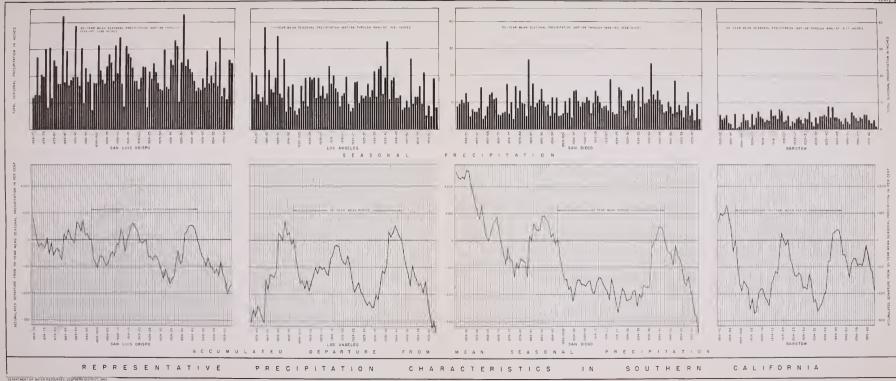
B~13

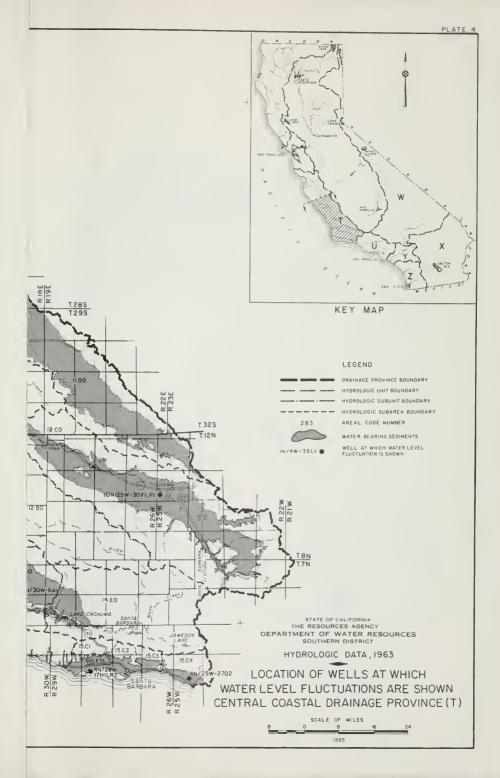
CASTALC CREEK ABOVE CORDOVA RANCH

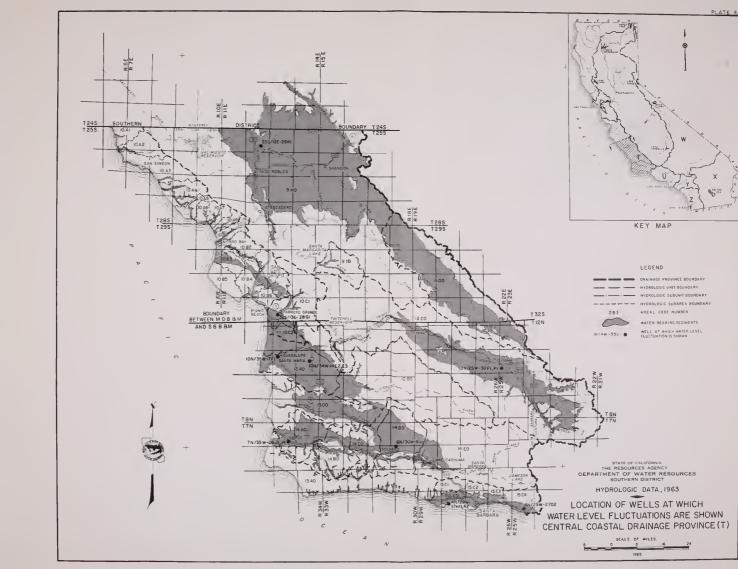

Z32360 1963 STATION NO



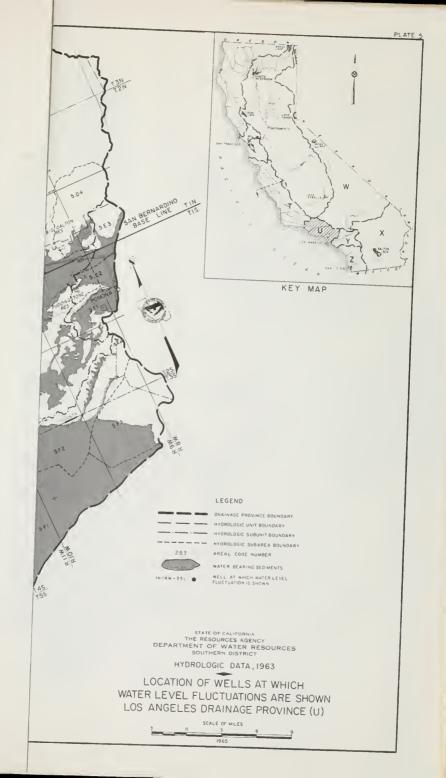





PLATE


-

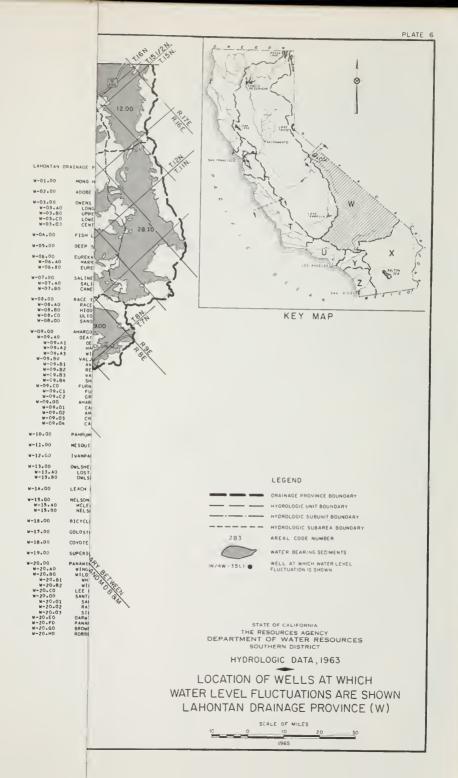
in the second second



AREAL DESIGNATIONS HYDROLOGIC UNITS, SUBUNITS AND SUBAREAS CENTRAL COASTAL ORAINAGE PROVINCE


T-09.00 SALTNAS HYDRO UNIT

7-09.00	PASO ROBLES HYDRO SUBUNIT
01.90-1	POZO HYDRO SUBUNIT
T-10.00	SAN LUIS OBISPO HYDRO UNIT
7-10.AD	CANBRIA HYDRO SUBUNIT
T-10.A1	SAN CARPOFORO HYDRO SUBAREA
7-10-A2	ARROYO DE LA CRUZ MYDRO SUBARFA
1-10+A3	SAN SINEON MYDRO SUBAREA SANTA ROSA MYDRO SUBAREA
7-30.A4	VILLA HYDRO SUBAREA
7-10-A5	CAYUCOS HYDRO SUBAREA
7-10-A6	OLO HYGRO SUBAREA
7-10.A7	TORO HYDRO SUBAREA
T-10+AB T-10-80	SAN LUIS OBISPO HYDRO SUBUNIT
1-10.80	HORRO HYDRO SUBAREA
7-10-02	EHORRO HYDRO SUSAREA
T-10+03	LOS OSOS HYDRO SUSAREA
7-10-84	SAN LUIS OBISPO CR HYDRO SURAREA
7-10-65	POINT SAN LUIS HYDRO SUBAREA
T-10-86	RISHO HYDRO SUBAREA
T-10.E0	ARROYO GRANCE HYDRO SUBUNIT
7-10-01	ARROYO GRANDE MYDRO SUBAREA
1-10-02	NIPONO HESA HYDRO SUBAREA
T-11.00	CARRIZO PLAIN HYDRO UNIT
T-12+00	SANTA MARIA-EUYAHA HYORO UNIT
T=12.A0	SANTA MARIA HYDRO SUBUNIT
T=12+A0	SISOUDC HYDRO SUBUNIT
T-12.CO	CUYAMA VALLEY HYDRO SUBUNIT
	SAN ANTONIO HYDRO UNIT
1-13-00	SAN ANTONIO HIDRO DALL
7-14-00	SANTA YNEE HYORO UNIT
T-14.40	LOMPOC HYDRO SUBUNIT
T-14.00	SANTA RITA HYDRO SUBUNIT
T-14.CO	RUELLTON HYDRO SUBUNIT
T-1++D0	SANTA YNEZ HYDRO SUBUNIT
T-14.E0	HEADWATER HYDRO SURUHIT
T-15.00	SANTA BARBARA HYDRO UNIT
T-15.40	ARGUELLO HYDRO SUBUNIT
T-15.CD	SOUTH COAST HYDRO SUBUNIT
T-15.CI	GOLETA HYDRO SUBARER
7-15+62	SANTA BARRARA HYDRO SURAREA
T-15+C3	MONTECITO HYDRO SUBAREA
T-15+CA	CARPINTERIA HYDRO SUBAREA
	SANTA BARDARA CH 15 HYORD UNIT
1-16.00 T-16.40	SANTA BARBARA CH IS HYORO UNIT
T-16.80	SANTA ROSA ISLAND HYDRO SUBUNIT
T-16-80 T-16-60	SANTA RUSA ISLAND HYDRO SUBUNIT
1-10100	ANTIC CAOL 135-40 HTORO 3000411



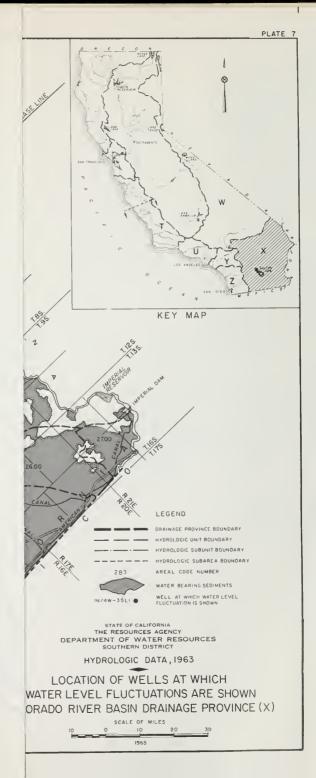


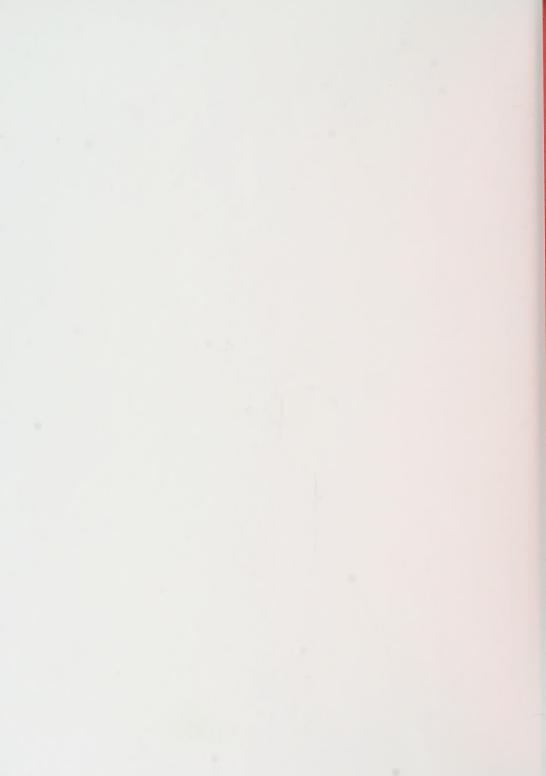
NETAL OFFICATIONS NUDROLOGIC UNITS, SURVETTS AND SURVEELS

#+22+00 #-22+40 #+22+80

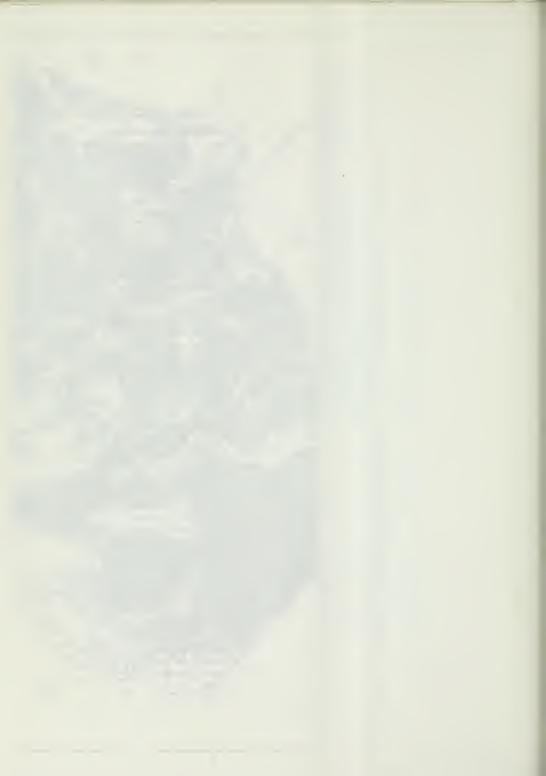
COSD H4040 URIT WILD H045E H1840 SURVEIT COSD H4040 SURVEIT N-21-02 UPPER CACTUS MODE UNIT

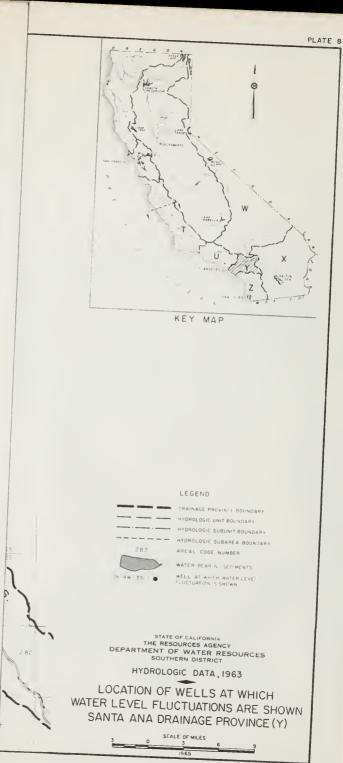
(019091 WT040 UAIT 2002 S#81a 5 WT090 SUPURIS 72150 Lastis WT040 SUPURIT 4517 T2M2082 WT040 SUPURIT 4517 R2442082 W1040 SUPURIT

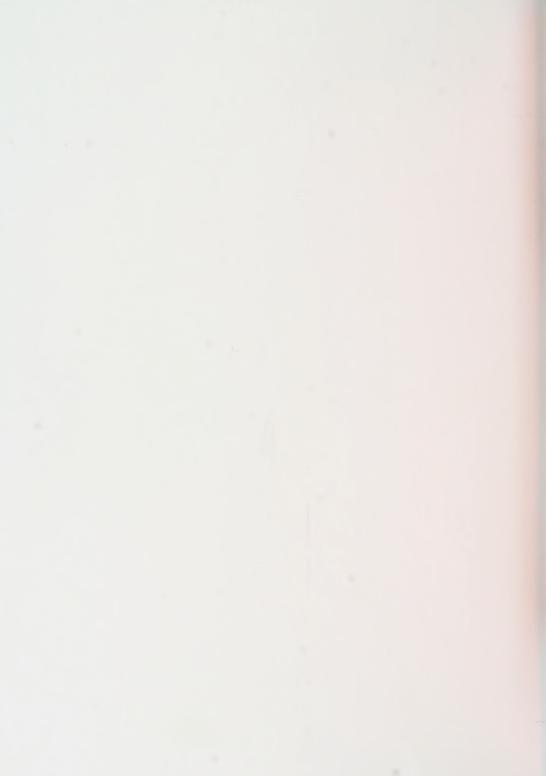

tritol
 tritol


#+19+50 BROADVILL HYDRO UR17

LENDRIAD OF	STARLE PROVINCE
+-61.00	HOND HYDRO UNIT
w-02.00	ADDRE WYDRO UNIT
N+03+00 N=03+60 N=03+60 N=03+60 N=03+01 N=04+01	ovita modo unit i Londo mingo suduni i unite ovitas moto suduni i covet e exelas moto suduni i covet e eccas moto suduni i falar Ladi moto suduni i
8-93.91	DECE SPEINST WYDER LINIT
	Eurites wrond unit
8-08,49 8-08,80	EGREXA HTDPG SUBURIT
8-07+00 8-07+40 8-07+01	SALINE WYDRO SUBURIY SALINE WYDRO SUBURIY CSMED WYDRO SUBURIY
00,80-0 00,80-0 00,80-0 00,80-0 00,80-0	PALE TRACE HYDRO LUNI RACE INACE HYDRO SUSURIT UNION HYDRO SUBURIT UNION HYDRO SUBURIT SAND HAT HYDRO SUBURIT
$\begin{array}{c} \psi = 0^{2} a_{1} b_{2} \\ \psi = 0^{2} a_{1} a_{2} \\ \psi = 0^{2} a_{2} b_{2} \\ \psi = 0^{2} b$	ambles and the set of
0-10-00	PHHPUMP HTSND UNIT
0-31+00	AESQUITE HTHIS UNIT
8+12*03	TATABAN WIDDS ONLY
9-13+60 9-13+60 9-15+80	OWLSHEAD HYDRD UNIT LOSI LAAE HYDRD SUBURST DWLSHEAD HYDRD SUBURST
0-14.00	LERON HYDRO URLT
9-13:00	RELSON HTDRO UNIT RELEAN NTORD SUBJECT MELSON NTORD SUBJECT
w-11.60	
-15.00	BICYCLE HYDRO UN11
8-14100	GOLDSTORD HYDRO URLY
8-28-07	CONDIE HINDRO UNIT
8+10,00	SUPERTOR HTOPO UNIT
$\begin{array}{c} \mathbf{u}_{-} = 2 \cdot 0_{+} \cdot 0_{+} \\ \mathbf{w}_{-} = 2 \cdot 0_{+} \\ \mathbf{w}_{+} \\ \mathbf{w}_{+}$	Readers in cross unit exclusion cross unit entities and an exclusion entities and an exclusion entities and an exclusion search taken cross exclusion and an exclusion search and an exclusion and an exclusion search and and an exclusion and and search and and an exclusion and and search and and and and search and and and and search and and and and search and and and search and and and search and and and search and and search and and search and and search and s




3-01-00 x-02+00


X-08+00

X-11.00

x-14.00

	AREAL DESIGNATIONS
HYDROI	OGIC UNITS SUBUNITS AND SUBERLAS
SANYA ANA DI	ASHAGE PROVINCE
7=01+01	SANTA ANA RINTE HYDRO UNIT
¥=01+A0 ¥=01+A1	LOWER SANTA ANA RIV MYDRO SUBUNIT CAST COASTAL PLATA NYCRO SUPAREA
Y-70.47	SANTA ANA NARROWS HVDRO SURAREA MIDOLE SANTA ANA RIV HYDR SUBUNIT
¥-08-05	
1-01-82	MARRISON HYDRO SUPARER CLARENDRS HEIGHTS MYDRO SURARER
7-03-63	
¥=01+55	TENESCAL NODO SURAREA
9-01-08 9-31-07	ARLINGTON HYDRO CURPERA RIVERSION HYDRO SURDERA
Y-01+C1 Y-01+C2	COLOWATER HYDRO SUSSERA
7-01-05	GEOFJED HYDED SUJARCA CAJALCO HYDED SUJARCA
7-01+Ca ¥-01+C5	LEE LAAE WYDED SUSABEA TERRA COTTA WYDED SUSABEA
	COLTON-RIALTO HYDRO SUSARIA UPPER LYTLE HYDRO SUSARIA LONER LYTLE HYDRO SUSARIA COLTON-RIALTO HYDRO SUSARIA
7-11-01 7-01-07	UPPER LYTLE NTORD SUBJECT
Y=01.07	CONTON-REAL TO HYDRO SUSAFEA
V-01.04	
Y-03-E0	CAUCH SANTA ANA HYDRO CUMUNIT CAUCH HYDRO SUBARTA
V-01+62	
9+01+83 9-01+84	REDLANDS HYDRO SUPAREA REMIDNE HIDRO SUPAREA
	RESERVOIR HYDRO SUBAREA
8+01+E8 8=01+E7	CRAFICH HIGHA SUZARIA SANTA ANA CANFON HIGHC SUBARCA
7-21-58	WILL CREEK HYDRO SUPARSE
Y=C1+E9 F=01+F0	SYCANDEE HYDRO SUSAPEA
7-72-53	VUCAIDA HYDRO SUPAREA
	KAN TIMOYEO HVORO SUBARAS
7=01=F3 7=01+F8	ENERSY VALLEY HIDRO SUBARES
	CHICKEN HILL MIDIO SURAREA GATEMAR HERRO SURAREA
7-01-F5 7-01-F7	DAL GLER HVDRC SUBARER SOUTH HESA HIDRO SURAFA
7-01-05	TRIPLE FALLS CREEK HYDTO SUBRPEA
7-01.59 7-01.60	HORIE CREEF HYDRO SUFAREA SAN DERWARDING MIN HYDRO SUSUNIY
#=01e63	
1-01-62 V-01-63	SEVER GARS HYDRO SUPAREA RELEVEN HYDRO SUPAREA
V-D2.00 X-02.40	REALS NEDRO SUBURIT
v-02.43	REARTS VALLEY NYORD SUBARCA WENTREE HADRO SUBARCA
9=02=82 9=02=83	WENTREE HADRS SUBARCA WINCHESTER HADRO SUBAREA
Y=D2+44	
¥-C2-AS	HENET HEORO SUBAREA SAN JACINTO HYDRO SUBUNIR
A=05*80 A=05*80	SAN JACINIO HYDRO SURAREA
8-02-52	NEWER LARE HYDRE SUPAREA
¥-02+83 ¥-02+00	SAUTISTA HTORO SURANEA FLSTNORF HYDRO SURUNIT
7-72+51	ELSINORE HYDRO SUBAREA RAILEDAD HYDRO SURAREA
T=02+C2	RAILEGAD HEDED SURAETA

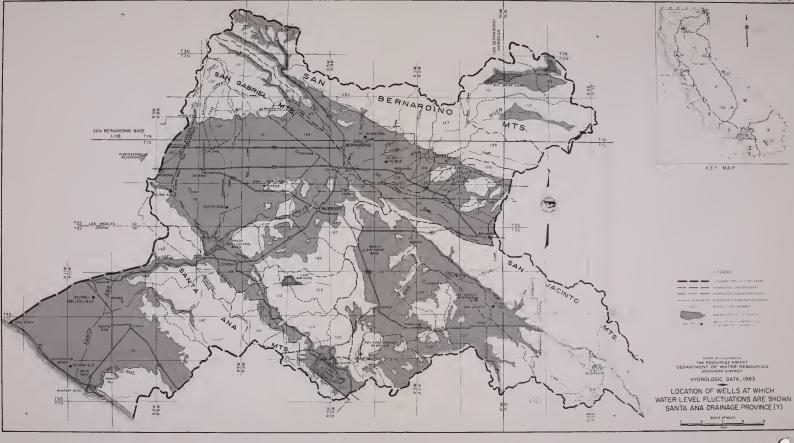
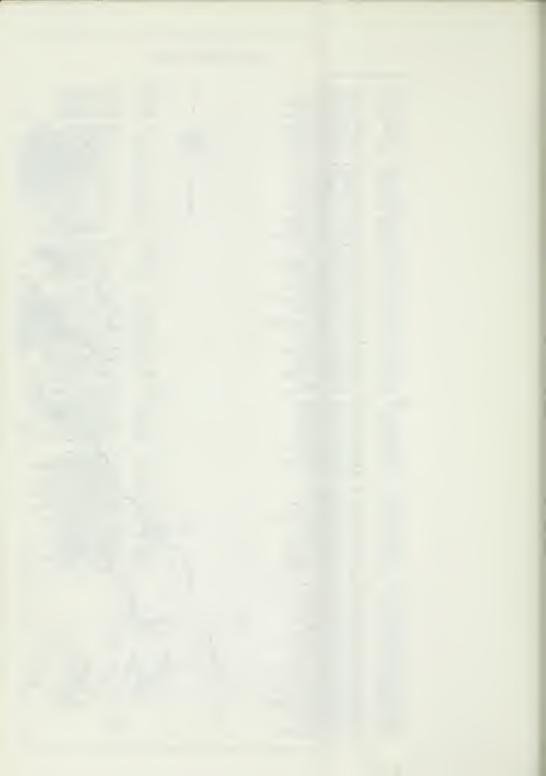
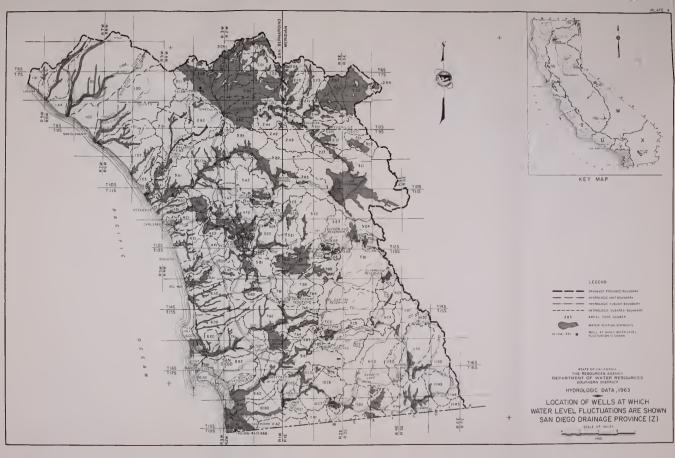
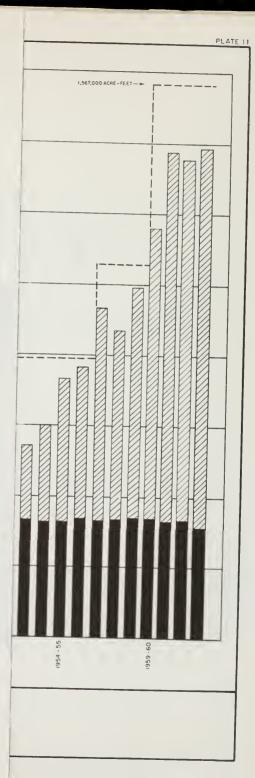
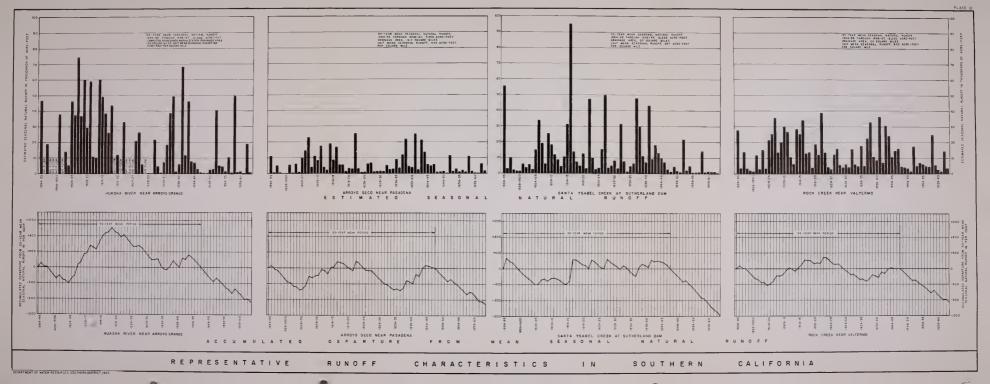



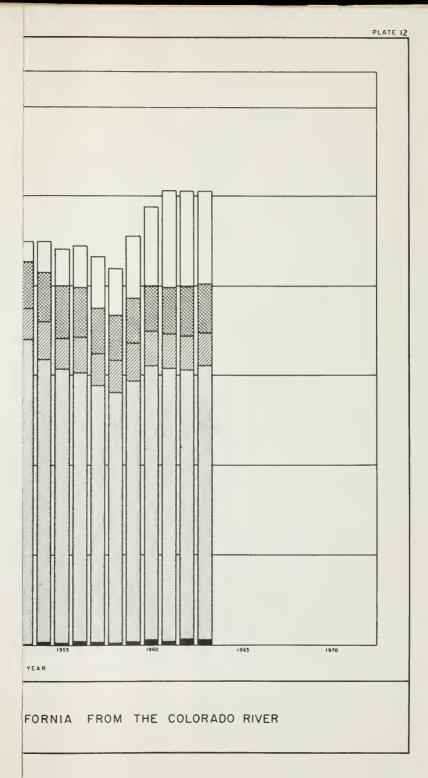

PLATE 8

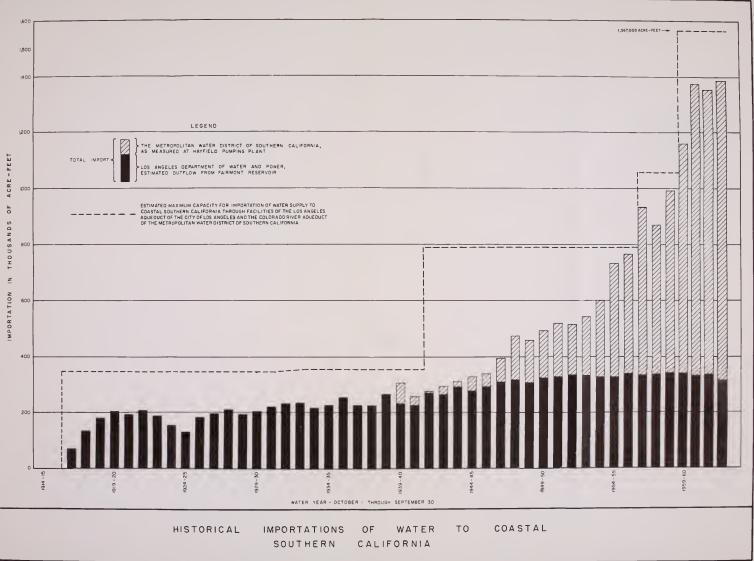


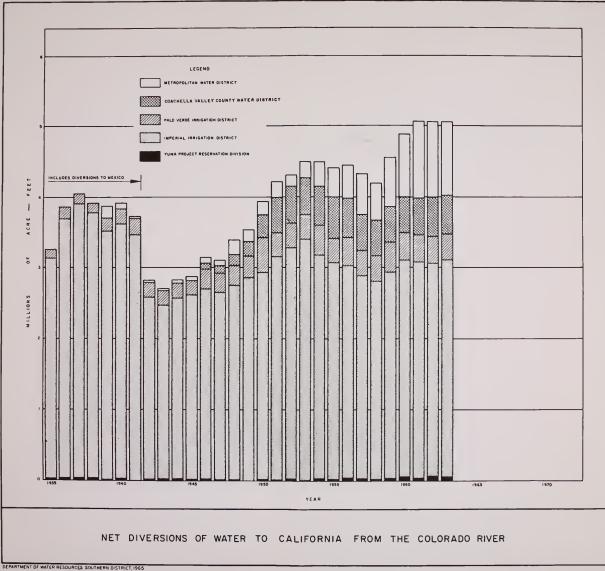

AREAL DESIGNATIONS

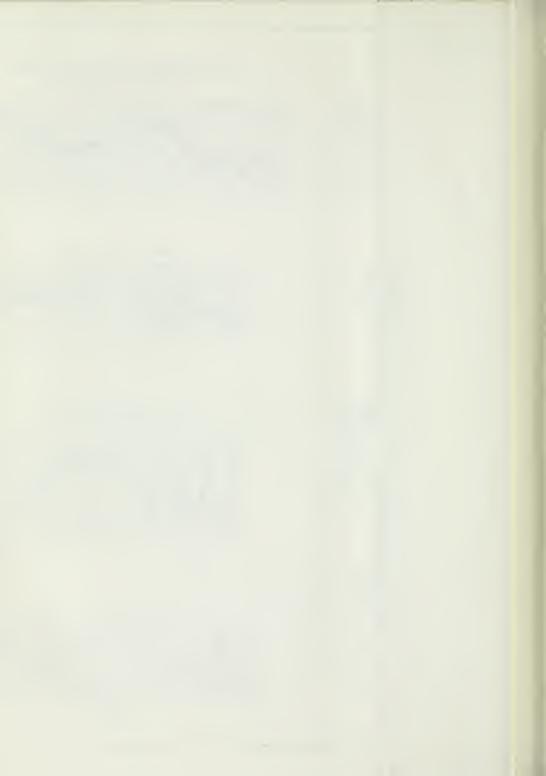
SAN DIEGO DEBINAGE PROVINCE				
2-01,0* 2-1,40 2-1,47 2-1,47 2-1,47 2-1,48 2-1,4	Ster John HYDD UNIT Skarpen HYDD UNIT Skarpen HYDD Stoffwra Skarpen Hyddor Stoffwra Hyddor Hyddor Stoffwra She John Hyddor Stoffwra She John Hyddor Stoffwra She John Hyddor Stoffwra She John Hyddor Stoffwra Stoffwrait Wadd Stoffwra Stoffwrait Wadd Stoffwra Stoffwrait Wadd Stoffwra Stoffwrau Wadd Stoffwra Stoffwrau Dob Stoffwra Stoffwrau Dob Stoffwra			
2-*1+42	SAN JDIQUIN HIDRD SJERTER LAGUAR HYDRD SUERER			
2-71-63	ALISO HYDRO SUPARCA			
2-01-90	SAN JUAN WYDRO SUDUNIT			
7-01-00	SAN MATEO HYDED SUSURIT			
Z-01-01	SAN ONOFRE NYDRO SUPAREA			
8-01-83	STURRT HYDED SUBRES			
2-02-30 2-52-40	SANTA NARGARITA HIDRO UNIT YSIDORA HIDRO SUBUNIT			
Z-07+63 Z=02.62	CHARPO HYDRO SUMARES CHARPO HYDRO SUMARES			
2-02.90	DE LUZ HTDRD SURGAREA			
2-02-81	GEVELAN MYDRD SURARA			
2-02.05	WALLECTIDS HYDED SUMMERA MURATESA HYDED SUMUNIT			
1-(3-01	MIBBILLE MADED POLYAGE			
2-32+65	FOALS CONTAICONT HACSO 2054619			
2-02+09	DIAMOND HIGHD SUSARIA			
2-02-01	AULO HYDRO SURVER			
2-02+01	A SAREN ORONA MICHO SUSARA			
2=02+04	PECHANGA NYONO SUDUHIY			
2-02+62	PECHANGE HYDRO SUBERFA			
2-02.90	LANCASTER VALLET NTOPO SUSARCA			
2-02+83	WILSON HYDRD SUSANCA			
2-02.60	LOWER CDAWILA NYTED SURARCA			
2-07.64	ANZA HYDRO SURANYA			
2-02.00	ACUENCA HTORD SUSURIT			
Z=72+H1 Z=DZ+H2	OSVILS HOLE HYDRO SURARIA			
Z=02.Ht	AGUANGA NYDED SURARIA			
2-02-10	LOWIN CULP HIDRO SUMANIA			
1-09-02 -2-09-04 2-	DODGE HEDRE SUPARES			
2-03,40 2-0	ALA ALGARANT AND ALA ALA ALGARANT ALA ALGARANT ALGARANTAT ALGARANTAT ALGARANTAT ALGARANTAT ALGARANTAT ALGARANTAT ALGARANTAT ALGARANTAT ALGARANTAT ALGARANTTAT ALGARATTAT ALGARANTAT ALGARANTTAT ALGARANTTAT ALGARANTTAT ALG			
2-03.40 2-03.63	BONSALL HTDRO SUBURIT MISSION HTDRO SUBARIA			
2-09-83	BONSALL NYDED SUMAELS MODSE MYDED SUMAELS			
2-03.44	WOODS WTORD SUBAREA			
44.8C=5 04.80-5	RINCON MODED SURAREA HONSERETE MYDRO SURUNIT			
2-01,81 2-03,82	PALA NYDED SURANEA			
2-09.45	SAN LUIS BET HIDED SURVERS			
5-24463	COMES HYDE? SURFEER			
2-04.30 2-04.40 2-04.40 2-04.61 2-04.62 2-04.60 2-04.60 2-04.60 2-04.60 2-04.60 2-04.60 2-04.61 2-04.60 2-04.61 2-04.6	Curso and points the second points by the motion bulkwith by the motion bulkwith by the motion bulkwith the second points by the motion bulkwith by the motion bulkwith the second bulkwith by the motion bulkwith the second bulkwith by the second bulkwith by t			
2-01.00	CARLSPAD HYDRO SURAREA			
2-04.60	KISTA HYDED SUBAREA ROUR HEOJOHDA HYDED SURUHJE			
2-04-01	BUENE HEDIONDA HEORO SURAREA BUENE HEDIONDA HEORO SURAREA			
2-06.E0	SAN MARCOS MYORD SURUNIT			
2-04-21	SAN WARCDS HYDRO SUPARYA SAN WARCDS HYDRO SUPARYA			
2-04,83	ESCONDIDO HYDRO SUSARIA			
2-36.92	ESCONDIO HYDRO SUBARIA			
7-24.05	LASE BORLFORD HYDRO SUSAREA			
2-15.67	SAN DIFOUTO HEAD SUBURIE			
2-05-62	LA JULIA HADAD SUMAMIA			
2-05-91	HODGES HYDRO SUPAREA			
2=05.03	TELECITA HYDED SUMARIA			
2-05.00	SAN RASDUAL HIDED SUBURIT HIGHLAND HYDEG SUPARIA			
2-05-02	SAN PASOUAL HYDRO SURARTA RETO HYDRO SU AREA			
2-05-54	MIDDEM MEDRO SUSAREA			
2-03+00	VINCTARN NAMES OF ALLEY MYDER OF ALLEY MYDER SANNA WARES WALLEY MYDER OF OF MYDER			
2-35-01 2-55-02	RANDER HYDRO SURAPES			
2-15.05	WASH HOLLOW HIDED SUMARIES			
Z-15.05 Z-15.06	PALLENA HEDRO SUPARCA PAST SANTA 121554 HEORO SUBARCA			
2-15.07	SENTE PEREL NTORD SUBLAFA			
2-44,00 2-2-1,1 2-2-1,2 2-2-2,2 2-2-1,2 2-2	PANN HYDED SUBABAA			
2-05.24	The second desiration and the second and the second desiration of the s			

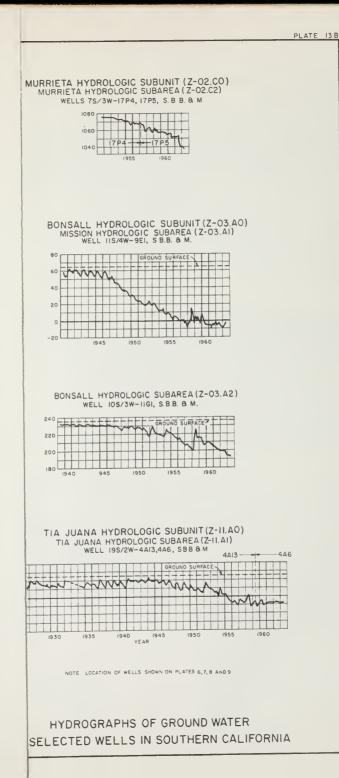

P5 4 9 1 4 9		
-08.00 2-08.80 2-08.00 2-08.00 2-08.00 2-08.00	PERKADUITO HITORO UNIT SOLEORO HITORO SUGUNIT PONAY HITORO SUGUNIT SCRIPPS HITORO SUGUNIT HIRHAR HITORO SUGUNIT TECOLORI, HITORO SUGUNIT	
	SAN DIRCO HIDED UNIT LOWER SAN DIRCO HYDEN KURUNIT	
-07,00 2-07,40 2-07,41 2-07,41 2-07,41 2-07,41 2-07,40 2-07,40 2-07,40 2-07,40 2-07,20 2-0,	ministro ika bitco nito svakaj statisti interno tutali interno Condi sepan tutale condi sepan tutale de statisti endo subuti ska vistati endo subuti ska vistati endo subuti de statisti endo subuti (contace vendo subuti de statisti endo subuti (contace vendo subuti prese endo subuti (contace vendo subuti prese endo subuti	
2-07.85 2-07.85 2-07.00 2-07.01 2-07.02	COMPR HYDRD SUBAREA RATINA HYDRD SUBAREA EL CAPITAN HYDRD SUBAREA EL CAPITAN HYDRD SUBAREA CLEN DARS HYDRD SUBAREA SUBAREA SUBAREA	
	CUYAMACA HYDRO SUBARCA SWENCER HYDRO SUBARCA CUYAMACA HYDRO SUBAREA CUYAMACA HYDRO SUBAREA	
-0#+0' Z-0#+00 Z-0#+00 Z-0#+00 Z-0#+00 Z-0#+00 Z-0#+02	CORONADI MURICO SULUATI PARADISE MURICO SULUATI E LINDEGON MULICO SULUATI E LINDEGON MULICO SULUATI E LINDEGON MULICO SULUATI E TOTAR HUCCO SUBARCA PARADISE MURICO SULARCA PARADISE MURICO SULARCA PARADISE MURICO SULARCA PARADISE MURICO SULARCA PARADISE MURICO SULARCA PARADISE MURICO SULARCA E TOTAR HUCCO SULARCA E TOTAR E TOTA	
2-09.07 2-09.40 2-09.41 2-09.41 2-09.62 2-09.80 2-09.81 2.09.85	PARADISE HYDRO SUPAREA SWEETHATER HYDRO UNIY LONER SHEETHATER HYDRO SUPAREA SWEETHATER HYDRO SUBAREA SWEETHATER HYDRO SUBAREA	
2-09,83	HIDDLE SWEEFRAIRA HYDRO SUBUNET JAMACHA HYDRO SUBAREA HIRLSDALE HYDRO SUBAREA GALLOWAY HYDRO SUBAREA STOUMA HYDRO SUBAREA	
2-09.80 2-09.20 20.90-2 20.90-2 2.09.2 2.09.2 2.09.5 2.09.5 2.09.5 2.09.5 2.09.5 2.09.5 2.09.5 2.09.5 3.09.5 3.09.5 5.09	Control and a second se	
2-09+05 2-16,4 2-17+80 2-12+0	GARNYT HYDRO SUSARCA DTAY HYDRO HIT COTONADO HYDRO SUSUVI) DTAY HYDRO SUSUVI) DTAY HYDRO SUSUVIT	
10.00 2-16.4 2-16.4 2-10.60 2-10.61 2-10.61 2-10.63 2-10.65 2-10.65 2-10.65 2-10.65	τικοίατζα ελαίτος πορο χρακτα Οδαγτάδα πορο δυάλοτη το Οτεγγοριστικό το το το πορο δυάλοτη το πορο δυάλοτη το πορο δυάλοτη το πορο δύαλοτη το πορο δύαδο δύα το πορο δύαδο δύα το πορο δύα δύα δύα το πορο δύα δύα δύα δύα το πορο δύα δύα δύα δύα το πορο δύα δύα δύα δύα δύα το πορο δύα δύα δύα δύα δύα δύα το πορο δύα δύα δύα δύα δύα δύα δύα δύα το πορο δύα	
2-11,03 2-11,41 2-11,41 2-11,42 2-11,43	TTA JUANA HYDRD UNIT 134 JUANA HYDRD SUBURTY 114 JUANA HYDRD SUBAREA SAN YSIDRO HYDRD SUBAREA POTRERD HYDRD SUBAREA HYDRD HYDRD SUBAREA	
2-13:02 2-13:03 2-11:04 2-11:04 2-11:05 2-11:00	REE CANDO NORO SUNAREA RARETI MUDRO SUNAREA ROUNO POIRERO MUDRO SUNAREA POIRERO MUDRO SUNAREA BARRETI LARE MUDRO SUNAREA BARRETI LARE MUDRO SUNAREA	
$\begin{array}{c} -11_{1} & 0.2 \\ \vec{z} - 11_{1} & 41. \\ \vec{z} - 11_{1} & 43. \\ \vec{z} - 11_{1} & 53. \\$	THE HYDRO SUBAREA WORVAN HYDRO SUBAREA WORVAN HYDRO SUBUNIT COTSOHWDOD HYDRO SUBUNIT CARETON HYDRO SUBUNIT CANDO HYDRO SUBUNIT	
E - 3 5 4 H 5 E - 1 5 4 H 2 E - 1 5 4 H 2 E - 1 5 4 H 4 E - 1 5 4 H 5	The start and the set of the set	

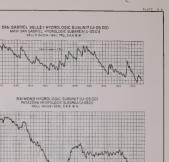


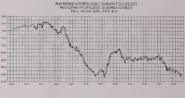


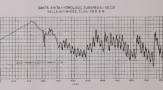

DEPARTMENT OF WATER RESOURCES, SOUTHERN CISTRICT, 1965

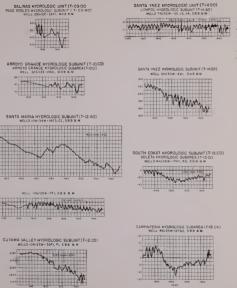

PLATE II

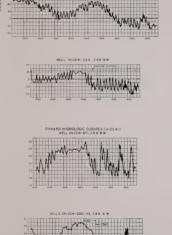



PLATE 12









WELLS IS/IOH-IBAI, 782, 5 8.0 8 M

HYDROGRAPHS OF GROUNO WATER AT SELECTED WELLS IN SOUTHERN CALIFORNIA

OXNARD PLAIN HYDROLOGIC SUBUNIT (U-03 AO)

OXNARD HYDROLOGIC SUBAREA (U-O3 AU

WELL IN/22W-3F4. 3 88 8 M

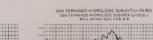
CENTRAL HYOROLOGIC SUBAREA (U-05 A5)

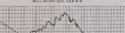
COASTAL PLAIN OF LOS ANGELES COUNTY

HYOROLOGIC SUBUNIT (U-05 A0)

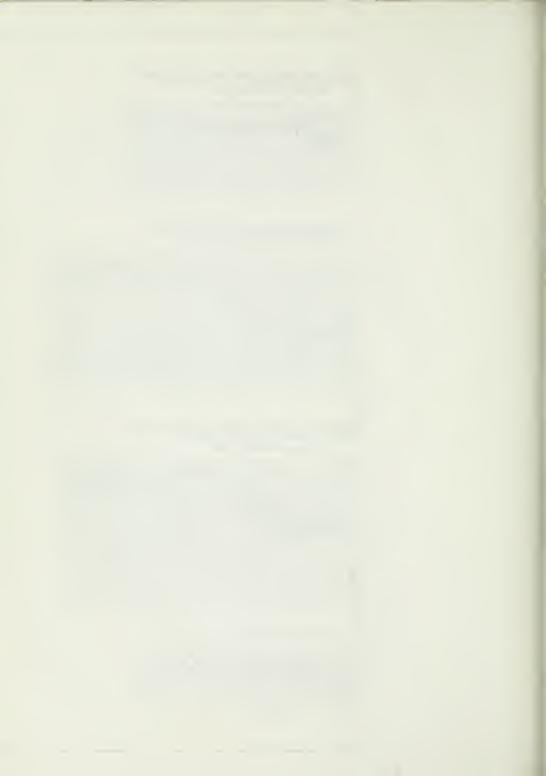
WEST COAST HYDROLOGIC SUBAREA (U-D5 42)

WELLS 35/14W-25N1 03. 50 0 0 M


WELLS 43/3W-21H3,21H2,588 GM

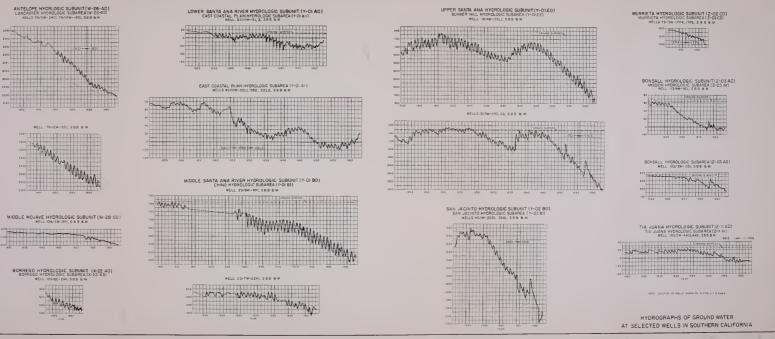


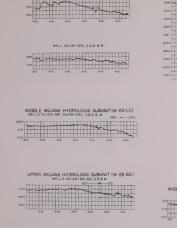
WELL 29/15W-22CI, 588 B.M.


COASTAL PLAIN OF LOS ANGELES COUNTY

CENTRAL HYOROLOGIC SUBAREA (U-05 A5) WELL 25/15W-10AL 55 8 8 M

CENTRAL HYDROLOGIC SUBAREA (U+05 A5)


WELLS 25/ITW-IBM2, KS. SBB BM


10

LOWER MOJAVE HYDROLOGIC SUBUNIT (W-28 EO)

WELL 9N/IE-13E2, 586 6 M

ANTELOPE HYOROLOGIC SUBUNIT(W-26.A0) WILLOW SPRINGS HYDROLOGIC SUBAREATW-26.A31 WELL TH/T3W-29M, SUB BM

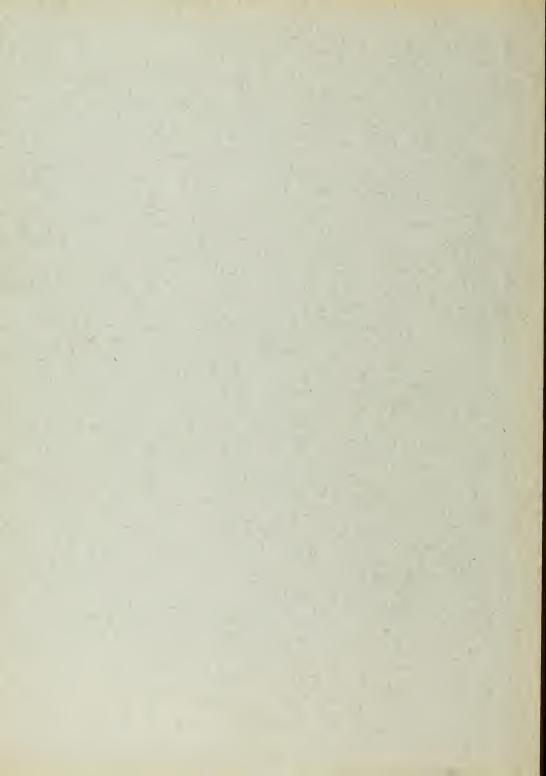
- 3

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-25m-6,'66(G3855s4)458



№ 482506

California. Dept. of Water Resources. Bulletin.	TC824 C2 A2 no.130:63
PHYSICAL	no.130103
SCIENCES	▼.5
LIBRARY	c.?

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

	Call Number:
482506	TC824
California. Dept.	C2
of Water Resources.	A2
Bulletin.	no.130:63

